Journal of Cluster Science

, Volume 18, Issue 1, pp 173–191 | Cite as

Trimeric, Cyclic Dimethyltin-Containing Tungstophosphate [{(Sn(CH3)2)(Sn(CH3)2O)(A-PW9O34)}3]21−

  • Firasat Hussain
  • Michael H. Dickman
  • Ulrich Kortz
  • Bineta Keita
  • Louis Nadjo
  • Gregory A. Khitrov
  • Alan G. Marshall
Article

Abstract

The trimeric, cyclic dimethyltin-containing tungstophophate [{(Sn(CH3)2)(Sn(CH3)2O)(A-PW9O34)}3]21− (1) has been synthesized in aqueous acidic medium and characterized by IR, elemental analysis, electrochemistry, and FT-ICR MS. Single-crystal X-ray analysis was carried out on Cs12Na9[{(Sn(CH3)2)(Sn(CH3)2O)(A-PW9O34)}3]·20H2O (1a), which crystallizes in the trigonal system, space group R3, with a = b = 29.7445(7) Å, c = 15.5915(7) Å and Z = 3. Polyanion 1 is composed of three trilacunary (A-PW9O34) Keggin fragments that are linked on one side via three isolated dimethyltin groups and on the other side by a (Sn3(CH3)6O3) unit and three cesium ions, resulting in a cyclic assembly with C3vsymmetry. The discrete molecular, hybrid organic–inorganic 1 was synthesized by reaction of (CH3)2SnCl2 with Na9[A-PW9O34] in 0.5 M sodium acetate buffer (pH 4.8). Comparison of several characteristics of the cyclic voltammograms of 1 and (A-PW9O34)9−, including the potential location of their reduction peaks, the difference in their current intensities and their qualitative relative electron transfer speeds, supports the conclusion that the solid-state structure of 1 is retained in solution. The presence of (PW9O34)-based species in solutions of 1 was also confirmed by FT-ICR mass spectrometry.

Keywords

Polyoxometalate organotin self-assembly electrochemistry FT-ICR mass spectrometry 

References

  1. 1.
    Pope M. T. (1983) Heteropoly and Isopoly Oxometalates Springer, BerlinGoogle Scholar
  2. 2.
    Pope M. T., Müller A. (1991) Angew. Chem. Int. Ed. 30:34CrossRefGoogle Scholar
  3. 3.
    M. T. Pope and A. Müller (eds), Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity (Kluwer, Dordrecht, 1994)Google Scholar
  4. 4.
    C. L. Hill (ed), Chemical Reviews, Polyoxometalates (1998)Google Scholar
  5. 5.
    (a) J. J. Berzelius (1826). Pogg. Ann. 6, 369. (b) J. F. Keggin (1933). Nature 131, 908. (c) J. F. Keggin (1934). Proc. Roy. Soc. A 144, 75Google Scholar
  6. 6.
    M. T. Pope and A. Müller (eds), Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications (Kluwer, Dordrecht, 2001)Google Scholar
  7. 7.
    T. Yamase and M. T. Pope (eds), Polyoxometalate Chemistry for Nano-Composite Design (Kluwer, Dordrecht, 2002)Google Scholar
  8. 8.
    J. J. Borrás-Almenar, E. Coronado, A. Müller and M. T. Pope (eds), Polyoxometalate Molecular Science (Kluwer, Dordrecht, 2004)Google Scholar
  9. 9.
    (a) J .T. Rhule, C. L. Hill, and D. A. Judd (1998). Special issue on polyoxometalates, Chem. Rev. 98, 327. (b) S. G. Sarafianos, U. Kortz, M. T. Pope and M. J. Modak (1996). Biochem. J. 319, 619Google Scholar
  10. 10.
    (a) D. G. Allis, R. S. Rarig, E. Burkholder, and J. Zubieta (2004). J. Mol. Struct. 688, 11. (b) X. B. Cui, J. Q. Xu, Y. H. Sun, Y. Li, L. Ye, and G. Y. Yang (2004). Inorg. Chem. Commun. 7, 58. (c) L. Ouahab, S. Golhen, Y. Yoshida, and G. Saito (2003). J. Clust. Sci. 14, 193. (d) Z. B. Han, H. Y. An, L. Wang, G. Y. Luan, E. B. Wang, and Z. X. Han (2003). Chem. J. Chinese. U. 24, 1558. (e) Y. Shen, J. Y. Liu, J. G. Jiang, B. F. Liu, and S. J. Dong (2003). J. Phys. Chem. B 107, 9744. (f) L. Yang, H. Naruke, and T. Yamase (2003). Inorg. Chem. Commun. 6, 1020. (g) A. Dolbecq, P. Mialane, L. Lisnard, J. Marrot, and F. Secheresse (2003). Chem. Eur. J. 9, 2914. (h) S. Reinoso, P. Vitoria, L. Lezama, A. Luque, and J. M. Gutierrez-Zorrilla (2003). Inorg. Chem. 42, 3709Google Scholar
  11. 11.
    (a) U. Kortz, M. G. Savelieff, F. Y. Abou Ghali, L. M. Khalil, S. A. Maalouf, and D. I. Sinno (2002). Angew. Chem. Int. Ed. 41, 4070. (b) U. Kortz, J. Vaissermann, R. Thouvenot, and P. Gouzerh (2003). Inorg. Chem. 42, 1135. (c) U. Kortz, C. Marquer, R. Thouvenot, and M. Nierlich (2003). Inorg. Chem. 42, 1158Google Scholar
  12. 12.
    (a) W. H. Knoth (1979). J. Am. Chem. Soc. 101, 759. (b) W. H. Knoth (1979). J. Am. Chem. Soc. 101, 2211. (c) W. H. Knoth, P. J. Domaille, and D. C. Roe (1983). Inorg. Chem. 22, 818. (d) W. H. Knoth, P. J. Domaille, and R. D. Farlee (1985). Organometallics 4, 32Google Scholar
  13. 13.
    Q. H. Yang, H. C. Dai, and J. F. Liu (1998). Transition Met. Chem. 23, 93. (b) X. H. Wang, H. C. Dai, and J. F. Liu (1999). Polyhedron 18, 2293. (c) X. H. Wang, H. C. Dai, and J. F. Liu (1999). Transition Met. Chem. 24, 600. (d) X. H. Wang and J. F. Liu (2000). J. Coord. Chem. 51, 73. (e) X. H. Wang, J. T. Liu, R. C. Zhang, B. Li, and J. F. Liu (2002). Main Group Met. Chem. 25, 535Google Scholar
  14. 14.
    (a) F. Zonnevijlle and M. T. Pope (1979). J. Am. Chem. Soc. 101, 2211. (b) F. Xin and M. T. Pope (1994). Organometallics 13, 4881. (c) F. Xin and M. T. Pope (1996). Inorg. Chem. 35, 5693. (d) F. Xin, M. T. Pope, G. J. Long, and U. Russo (1996). Inorg. Chem. 35, 1207. (e) G. Sazani, M. H. Dickman, and M. T. Pope (2000). Inorg. Chem. 39, 939Google Scholar
  15. 15.
    (a) S. Bareyt, S. Piligkos, B. Hasenknopf, P. Gouzerh, E. Lacote, S. Thorimbert, and M. Malacria (2003). Angew. Chem. 115, 3526; Angew. Chem. Int. Ed. 42, 3404. (b) S. Bareyt, S. Piligkos, B. Hasenknopf, P. Gouzerh, E. Lacote, S. Thorimbert, and M. Malacria (2005). J. Am. Chem. Soc. 127, 6788Google Scholar
  16. 16.
    G. Sazani and M. T. Pope (2004). Dalton Trans 1989Google Scholar
  17. 17.
    (a) F. Hussain, M. Reicke, and U. Kortz (2004). Eur. J. Inorg. Chem. 2733. (b) F. Hussain, U. Kortz, B. Keita, L. Nadjo, and M. T. Pope (2006). Inorg. Chem. 45, 761. (c) F. Hussain and U. Kortz (2005). Chem. Commun. 1191. (d) U. Kortz, F. Hussain, and M. Reicke (2005). Angew. Chem. Int. Ed. 44, 3773Google Scholar
  18. 18.
    (a) P. J. Domaille (1990). Inorg. Synth. 96. (b) J. Fuchs and R. Palm (1988). Z. Naturf. 43, 1529. (c) R. Acerete, J. Server-Carrió, A. Vegas, and M. Martínez-Ripoll (1990). J. Am. Chem. Soc. 112, 9386Google Scholar
  19. 19.
    Alternative synthesis procedures for Cs12Na9[{(Sn(CH3)2)(Sn(CH3)2O)(A-PW9O34)}3]·20H2O (1a). (a) To 0.10 g (0.42 mmol) (CH3)2SnCl2 dissolved in 20 mL 0.5 M sodium acetate buffer (pH 4.8) was added a 0.68 g (0.20 mmol) sample of Cs7[γ-PW10O36] [18a]. This solution was heated to 80°C for 1 h and then cooled to room temperature, filtered and allowed to evaporate in an open vial at room temperature. Colorless crystals of 1a started to appear after 2–3 weeks. (b) To 0.10 g (0.42 mmol) (CH3)2SnCl2 in 20 mL 0.5 M sodium acetate buffer (pH 4.8) was added a 0.43 g (0.20 mmol) sample of Cs6[P2W5O23] [18a]. This solution was heated to 80°C for 1 h and then cooled to room temperature, filtered and allowed to evaporate in an open vial at room temperature. Colorless crystals of 1a started to appear after 2–3 weeks. (c) To 0.10 g (0.42 mmol) (CH3)2SnCl2 in 20 mL H2O was added a 1.15 g (0.20 mmol) sample of Na20[P6W18O79] [18b, c]. The pH was adjusted to 4.3 by slow addition of dilute hydrochloric acid. This solution was heated to 80°C for 1 h and then cooled to room temperature and filtered. A few drops of dilute CsCl solution were added to the filtrate which was then allowed to evaporate in an open vial at room temperature. Colorless crystals of 1a started to appear after 2–3 weeks. The identity of all products was established by IR and single-crystal XRDGoogle Scholar
  20. 20.
    G. M. Sheldrick, SADABS, University of Göttingen, 1996Google Scholar
  21. 21.
    H. D. Flack (1983) Acta Cryst. A39:876Google Scholar
  22. 22.
    B. Keita, Girard F., Nadjo L., Contant R., Canny J., Richet M. J. (1999) Electroanal. Chem. 478:76CrossRefGoogle Scholar
  23. 23.
    M. W. Senko, Hendrickson C. L., Emmett M. R., Shi S. D.-H., Marshall A. G. (1997) J. Am. Soc. Mass Spectrom. 8:970CrossRefGoogle Scholar
  24. 24.
    K. Håkansson, Chalmers M. J., Quinn J. P., McFarland M. A., Hendrickson C. L., Marshall A. G. (2003) Anal. Chem. 75:3256CrossRefGoogle Scholar
  25. 25.
    I. D. Brown, Altermatt D. (1985) Acta Cryst. B41:244Google Scholar
  26. 26.
    (a) S. Reinoso, M. H. Dickman, M. Reicke, and U. Kortz (2006). Inorg. Chem. 45, 9014. (b) S. Reinoso, M. H. Dickman, and U. Kortz (2006). Inorg. Chem. DOI: 10.1021/ic0619862 (in press).Google Scholar
  27. 27.
    K. C. Kim and M. T. Pope (2001). Dalton Trans. 986Google Scholar
  28. 28.
    R. Copping, A. J. Gaunt, I. May, C. A. Sharrad, D. Collison, M. Helliwell, O. D. Fox, and C. J. Jones (2006). Chem. Commun. 3788Google Scholar
  29. 29.
    F. Hussain, M. H. Dickman, and U. Kortz, unpublished resultsGoogle Scholar
  30. 30.
    R. Contant, Hervé G. (2002) Rev. Inorg. Chem. 22:63Google Scholar
  31. 31.
    R. Contant (1967) Can. J. Chem. 65:568CrossRefGoogle Scholar
  32. 32.
    D. Jabbour, B. Keita, I.-M. Mbomekalle, L. Nadjo, and U. Kortz (2004). Eur. J. Inorg. Chem. 2036Google Scholar
  33. 33.
    B. Keita, Y.-W. Lu, L. Nadjo, and R. Contant (2000). Eur. J. Inorg. Chem. 2463Google Scholar
  34. 34.
    G. C. Chorghade, Pope M. T. (1987) J. Am. Chem. Soc. 109:5134CrossRefGoogle Scholar
  35. 35.
    B. Keita, Nadjo L. (1989) Mater. Chem. Phys. 22:77CrossRefGoogle Scholar
  36. 36.
    E. Abdeljalil, Keita B., Nadjo L., Contant R. (2001) J. Solid State Electrochem. 5:94CrossRefGoogle Scholar
  37. 37.
    R. G. Finke, Trovarelli A. (1993) Inorg. Chem. 32:6034CrossRefGoogle Scholar
  38. 38.
    S. H. Wasfi, Costello C. E. (1989) Synth. React. Inorg. Met.-Org. Chem. 19:1059Google Scholar
  39. 39.
    S. H. Wasfi, Costello C. E., Rheingold A. L., Haggerty B. S. (1991) Inorg. Chem. 30:1788CrossRefGoogle Scholar
  40. 40.
    S. Nellutla, J. van Tol, Dalal N. S., Bi L. H., Kortz U., Keita B., Nadjo L., Khitrov G. A., Marshall A. G. (2005) Inorg. Chem. 44:9795CrossRefGoogle Scholar
  41. 41.
    G. A. Khitrov, L.-H. Bi, U. Kortz, and A. G. Marshall, Poster presentation at the 53rd ASMS Conference, Poster TP 258 (San Antonio, TX, June 5–9, 2005)Google Scholar
  42. 42.
    A. Venturelli, M. J. Nilges, A. Smirnov, R. L. Belford, and L. C. Francesconi (1999). J. Chem. Soc. Dalton. Trans. 301Google Scholar
  43. 43.
    C. R. Mayer, Roch-Marchal C., Lavanant H., Thouvenot R., Sellier N., Blais J.-C., Secheresse F. (2004) Chem. Eur. J. 10:5517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Firasat Hussain
    • 1
  • Michael H. Dickman
    • 1
  • Ulrich Kortz
    • 1
  • Bineta Keita
    • 2
  • Louis Nadjo
    • 2
  • Gregory A. Khitrov
    • 3
  • Alan G. Marshall
    • 3
  1. 1.School of Engineering and ScienceInternational University Bremen (Jacobs University Bremen as of spring 2007)BremenGermany
  2. 2.Laboratoire de Chimie Physique, UMR 8000, CNRS, Equipe d’Electrochimie et PhotoélectrochimieUniversité Paris-SudOrsay CedexFrance
  3. 3.Department of Chemistry and BiochemistryFlorida State University and National High Magnetic Field LaboratoryTallahasseeUSA

Personalised recommendations