Skip to main content
Log in

Solid-state Structures and Solution Behavior of Alkali Salts of the \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) Lindqvist Ion

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The hexaniobate Lindqvist ion \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) has long been known as the dominant specie in alkaline niobium oxide solutions. Recent advances in heteropolyniobate chemistry continue to be greatly aided by use of \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) alkali salts as soluble precursors; in particular, potassium, sodium and lithium hexaniobate salts. We report here the solid-state characterization and solution behavior of Li, K, Rb and Cs Lindqvist \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) salts. Synthesis and single-crystal X-ray diffraction data is reported for nine new hexaniobate salts. These structures differ in the number of charge-balancing alkali cations, protonation of the clusters, relative arrangement of the clusters and alkali metal cations, amount of lattice water and its mode of interaction with other lattice species. Trends of alkali-cluster bonding are observed as a function of alkali radius. Protonation of the clusters in the solid-state is influenced by the method of crystallization of the \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) salt. Lability of the cluster oxygens is observed by solution 17O NMR experiments. Rates of isotopic enrichment of the bridging oxygen, terminal oxygen and bridging hydroxyl cluster sites are compared for aqueous solutions of Li, K, Rb and Cs hexaniobate salts. Parameters influencing the oxo-ligand exchange rates of the salts are discussed relative to their use as heteropolyniobate precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bonhomme F. et al. (2005). Inorg. Chem. 44:1774

    Article  PubMed  CAS  Google Scholar 

  2. Nyman M. et al. (2004). Angew. Chem. Int. Ed. Engl. 43:2787

    Article  PubMed  CAS  Google Scholar 

  3. Nyman M. et al. (2002). Science 297:996

    Article  PubMed  CAS  Google Scholar 

  4. Goiffon A. et al. (1973). Rev. Chim. Miner. 10:487

    CAS  Google Scholar 

  5. Graeber E. J., Morosin B. (1977). Acta Crystallogr. B-Struct. Sci. 33:2137

    Article  Google Scholar 

  6. Nyman M. et al. (2003). J. Solid State Chem. 176:111

    Article  CAS  Google Scholar 

  7. Lindqvist I. (1953). Arkiv for Kemi 5:247

    CAS  Google Scholar 

  8. Goiffon A., Spinner B. (1974). Chim. Miner. Rev. 11:262

    CAS  Google Scholar 

  9. Alam T. M. et al. (2004). J. Am. Chem. Soc. 126:5610

    Article  PubMed  CAS  Google Scholar 

  10. Goiffon A. et al. (1980). Rev. Chim. Miner. 17:466

    CAS  Google Scholar 

  11. Besserguenev A. V. et al. (2001). Inorg. Chem. 40:2582

    Article  PubMed  CAS  Google Scholar 

  12. Fernanda M. et al. (2000). J. Coord. Chem. 50:145

    Google Scholar 

  13. Flynn C. M., Stucky G. D. (1968). Inorg. Chem. 8:332

    Article  Google Scholar 

  14. Hegetschweiler K. et al. (2002). Inorg. Chim. Acta 337:39

    Article  CAS  Google Scholar 

  15. Ozeki T. et al. (1994). Inorg. Chem. 33:409

    Article  CAS  Google Scholar 

  16. Ozeki T. et al. (1994). Bull. Chem. Soc. Jpn. 67:3249

    Article  CAS  Google Scholar 

  17. Canny J. et al. (1986). Inorg. Chem. 25:2114

    Article  CAS  Google Scholar 

  18. Contant R., Teze A. (1985). Inorg. Chem. 24:4610

    Article  CAS  Google Scholar 

  19. Grigoriev V. A. et al. (2000). J. Am. Chem. Soc. 122:3544

    Article  CAS  Google Scholar 

  20. Johnson B. J. S. et al. (2001). Inorg. Chem. 40:5972

    Article  PubMed  CAS  Google Scholar 

  21. Jorris T. L. et al. (1990). Inorg. Chem. 29:4584

    Article  CAS  Google Scholar 

  22. Kim K. C., Pope M. T. (1999). J. Am. Chem. Soc. 121:8512

    Article  CAS  Google Scholar 

  23. Knoth W. H., Harlow R. L. (1981). J. Am. Chem. Soc. 103:1865

    Article  CAS  Google Scholar 

  24. N. Laronze, et al. (2003). Chem. Commun., 2360

  25. Long D. L. et al. (2004). J. Am. Chem. Soc. 126:13880

    Article  PubMed  CAS  Google Scholar 

  26. Rozantsev G. M. et al. (2000). Russ. J. Coord. Chem. 26:247

    CAS  Google Scholar 

  27. Santos I. C. M. S. et al. (2002). Polyhedron 21:2009

    Article  CAS  Google Scholar 

  28. SMART, Bruker Analytical X-ray Systems, Inc., (Madison WI, 1999)

  29. SAINT-PLUS, Bruker Analytical X-ray Systems, Inc., (Madison WI, 1998)

  30. SADABS, Bruker Analytical X-ray Systems, Inc., (Madison WI, 1998)

  31. Farrugia L. J. (1999). J. Appl. Cryst. 32:837

    Article  Google Scholar 

  32. Altomare A. et al. (1999). J. Appl. Cryst. 32:115

    Article  CAS  Google Scholar 

  33. G. M. Sheldrick, SHELX97, 97–2 ed., (Institüt für Anorganische Chemie der Universität, Göttingen, Germany, 1998)

  34. Massiot D. et al. (2002). Magn. Reson. Chem. 40:70

    Article  CAS  Google Scholar 

  35. Cotton F. A., Wilkinson G. (1988). Advanced Inorganic Chemistry. John Wiley & Sons, New York

    Google Scholar 

  36. Filowitz M. et al. (1979). Inorg. Chem. 18:93

    Article  CAS  Google Scholar 

  37. Matsumoto M. et al. (2004). Inorg. Chem. 43:1153

    Article  PubMed  CAS  Google Scholar 

  38. Weinstock I. A. (1998). Chem. Rev. 98:113

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04–94Al85000. The authors thank the Sandia National Laboratories LDRD program for funding for this work, and Reference Metals Company for kindly supplying hydrous niobium oxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May Nyman.

Additional information

This paper is dedicated to Professor Michael T. Pope on the event of his retirement to acknowledge his fruitful career in polyoxometalate chemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, M., Alam, T.M., Bonhomme, F. et al. Solid-state Structures and Solution Behavior of Alkali Salts of the \([\hbox{Nb}_{6}\hbox{O}_{19}]^{8-}\) Lindqvist Ion. J Clust Sci 17, 197–219 (2006). https://doi.org/10.1007/s10876-006-0049-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-006-0049-x

Key words:

Navigation