Skip to main content
Log in

Interconverting WW Triple Bonds and W4 Clusters: Structures of W4(OPrn)16 and [Li2W2(OPrn)8(DME)]2*

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Alcoholysis of W2(NMe2)6 with excess n-propanol in hexane yields the tetranuclear cluster, W4(OPrn, I. Reduction of I with two equivalents of Li2COT in THF gives a small yield of Li2W2(OPrn)8. Single crystals were isolated by cooling the product mixture in DME and were shown to be [Li2W2(OPrn)8(DME)]2, II, which consists of a unique “dimer of dimers” structure. In this reaction sequence, W 16+4 cluster formation is followed by four electron reduction to reform the (W≡W)6+ unit. Better yields of the lithium salt can be obtained by the addition of LiOPrn/HOPrn solutions to W2(OBut)6 in which case Li2W2(OPrn)8 has been obtained as a 1:1 adduct with LiOPr. This identity of this salt was confirmed by solution NMR spectroscopy. In the alternative reaction, the (W≡W)6+ center remains intact from reactant to product. No attempt has been made to separate the product from excess LiOPr. DFT (ADF 2004.01) molecular orbital calculations on the model cluster W4(OH)16 are used to help elucidate the disruption of the W4 cluster upon four electron reduction. The molecular structures of compounds I and II are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Cotton R. A. Walton (1993) Multiple Bonds Between Metal Atoms Oxford University Press Oxford

    Google Scholar 

  2. M. H. Chisholm F. A. Cotton C. A. Murillo W. W. Reichert (1977) Inorg. Chem 16 1801–1808 Occurrence Handle10.1021/ic50173a045 Occurrence Handle1:CAS:528:DyaE2sXktl2lsL0%3D

    Article  CAS  Google Scholar 

  3. M. H. Chisholm J. C. Huffman C. C. Kirkpatrick J. Leonelli K. Folting (1981) J. Am. Chem. Soc 103 6093–6099 Occurrence Handle10.1021/ja00410a018 Occurrence Handle1:CAS:528:DyaL3MXlt1GgsL0%3D

    Article  CAS  Google Scholar 

  4. M. H. Chisholm K. Folting C. E. Hammond M. J. Hampden-Smith (1988) J. Am. Chem. Soc 110 3314–3315 Occurrence Handle10.1021/ja00218a059 Occurrence Handle1:CAS:528:DyaL1cXhvFOhtL0%3D

    Article  CAS  Google Scholar 

  5. M. H. Chisholm K. Folting C. E. Hammond M. J. Hampden-Smith K. G. Moodley (1989) J. Am. Chem. Soc 111 5300–5312 Occurrence Handle10.1021/ja00196a040 Occurrence Handle1:CAS:528:DyaL1MXktlalurs%3D

    Article  CAS  Google Scholar 

  6. M. H. Chisholm D. L. Clark M. J. Hampden-Smith (1989) J. Am. Chem. Soc 111 574–586 Occurrence Handle10.1021/ja00184a027 Occurrence Handle1:CAS:528:DyaL1MXksFOhsQ%3D%3D

    Article  CAS  Google Scholar 

  7. M. H. Chisholm (1986) Angew. Chem. Int. Ed. Engl 25 21–30 Occurrence Handle10.1002/anie.198600211

    Article  Google Scholar 

  8. M. H. Chisholm (1986) Polyhedron 5 IssueID1/2 25–30 Occurrence Handle10.1016/S0277-5387(00)84880-9 Occurrence Handle1:CAS:528:DyaL28XktlCgurY%3D

    Article  CAS  Google Scholar 

  9. M. H. Chisholm J. E. Hill I. P. Rothwell J. D. Martin (1992) Inorg. Synth 29 137–140 Occurrence Handle1:CAS:528:DyaK3sXnt1emsA%3D%3D

    CAS  Google Scholar 

  10. J. L. Spencer (1979) Inorg. Synth 19 214–218

    Google Scholar 

  11. Z. Otwinowski W. Minor (1997) Methods in Enzymology, Vol. 276: Macromolecular Crystallography, Part A Academic Press New York

    Google Scholar 

  12. G. M. Sheldrick (1990) Acta Cryst. A 46 467–473 Occurrence Handle10.1107/S0108767390000277

    Article  Google Scholar 

  13. G. M. Sheldrick (1997) Programs for Crystal Structure Analysis, Release 97–2 University of Gottengen Germany

    Google Scholar 

  14. L. J. Farrugia (1999) J. Appl. Cryst 32 837–838 Occurrence Handle10.1107/S0021889899006020

    Article  Google Scholar 

  15. G. M. Sheldrick (1993) SHELXL-93 University of Gottengen Germany

    Google Scholar 

  16. G. te Velde F. M. Bickelhaupt E. J. Baerends C. Fonseca Guerra S. J. A. Van Gisbergen J. G. Snijdgers T. Ziegler (2001) J. Comput. Chem 22 931–967 Occurrence Handle10.1002/jcc.1056 Occurrence Handle1:CAS:528:DC%2BD3MXjtlGntrw%3D

    Article  CAS  Google Scholar 

  17. C. Fonseca Guerra J. G. Snijders G. te Velde E. J. Baerends (1998) Theor. Chem. Acc 99 391–403 Occurrence Handle10.1007/s002140050021

    Article  Google Scholar 

  18. ADF 2004.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  19. S. H. Vosko L. Wilk M. Nusair (1980) Can. J. Phys 58 1200–1211 Occurrence Handle1:CAS:528:DyaL3cXlvFagt74%3D

    CAS  Google Scholar 

  20. J. P. Perdew (1992) Phys Rev B 46 6671 Occurrence Handle10.1103/PhysRevB.46.6671 Occurrence Handle1:CAS:528:DyaK38XlvFyks7c%3D

    Article  CAS  Google Scholar 

  21. E. Lenthe Particlevan A. E. Ehlers E. J. Baerends (1999) J. Chem. Phys 110 8943 Occurrence Handle10.1063/1.478813

    Article  Google Scholar 

  22. L. Fan T. Ziegler (1992) J. Chem. Phys 96 9005–9012 Occurrence Handle10.1063/1.462258 Occurrence Handle1:CAS:528:DyaK38XkvF2qsr4%3D

    Article  CAS  Google Scholar 

  23. M. H. Chisholm J. C. Gallucci C. B. Hollandsworth (2003) J. Organomet. Chem 684 269–276 Occurrence Handle10.1016/S0022-328X(03)00757-5 Occurrence Handle1:CAS:528:DC%2BD3sXot1Ogu7k%3D

    Article  CAS  Google Scholar 

  24. S. M. Beshouri I. P. Rothwell K. Folting J. C. Huffman W. E. Streib (1986) Polyhedron 5 1191–1195 Occurrence Handle10.1016/S0277-5387(00)81390-X Occurrence Handle1:CAS:528:DyaL2sXhsFKlsrc%3D

    Article  CAS  Google Scholar 

  25. T. A. Budzichowski M. H. Chisholm K. Folting J. C. Huffman W. E. Streib (1995) J. Am. Chem. Soc 117 7428–7440 Occurrence Handle10.1021/ja00133a016 Occurrence Handle1:CAS:528:DyaK2MXmvVejt7c%3D

    Article  CAS  Google Scholar 

  26. F. A. Cotton A. Fang (1982) J. Am. Chem. Soc 104 113–119 Occurrence Handle10.1021/ja00365a022 Occurrence Handle1:CAS:528:DyaL3sXotlSi

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF. We thank Dr. Chunhua Yan of the Ohio State University Campus Chemical Instrumentation Center for his assistance in obtaining 600 MHz proton NMR spectra on I. We also thank Dr. Karl Vermillion of the Ohio State University Chemistry Department for assistance in various NMR experiments on II. We are grateful to the Ohio Supercomputing Center for a grant of computational time on the Center of Excellence (COE) Pentium Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm H. Chisholm.

Additional information

*Dedicated to Professor F. A Cotton on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chisholm, M.H., Gallucci, J.C. & Hollandsworth, C.B. Interconverting WW Triple Bonds and W4 Clusters: Structures of W4(OPrn)16 and [Li2W2(OPrn)8(DME)]2*. J Clust Sci 16, 231–249 (2005). https://doi.org/10.1007/s10876-005-4546-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-005-4546-0

Keywords

Navigation