Skip to main content

Advertisement

Log in

Management of Atopy with Dupilumab and Omalizumab in CADINS Disease

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The caspase activation and recruitment domain 11 (CARD11) gene encodes a scaffold protein required for lymphocyte antigen receptor signaling. Dominant-negative, loss-of-function (LOF) pathogenic variants in CARD11 result in CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) disease. Patients with CADINS suffer with severe atopic manifestations including atopic dermatitis, food allergy, and chronic spontaneous urticaria in addition to recurrent infections and autoimmunity. We assessed the response of dupilumab in five patients and omalizumab in one patient with CADINS for the treatment of severe atopic symptoms. CARD11 mutations were validated for pathogenicity using a T cell transfection assay to assess the impact on activation-induced signaling to NF-κB. Three children and three adults with dominant-negative CARD11 LOF mutations were included. All developed atopic disease in infancy or early childhood. In five patients, atopic dermatitis was severe and recalcitrant to standard topical and systemic medications; one adult suffered from chronic spontaneous urticaria. Subcutaneous dupilumab was initiated to treat atopic dermatitis and omalizumab to treat chronic spontaneous urticaria. All six patients had rapid and sustained improvement in atopic symptoms with no complications during the follow-up period. Previous medications used to treat atopy were able to be decreased or discontinued. In conclusion, treatment with dupilumab and omalizumab for severe, refractory atopic disease in patients with CADINS appears to be effective and well tolerated in patients with CADINS with severe atopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Requests for data should be made via email to the corresponding authors.

Abbreviations

AEC:

Absolute eosinophil count

AR:

Allergic rhinitis

AD:

Atopic dermatitis

BENTA:

B cell expansion with NF-κB and T cell anergy

CADINS:

CARD11-associated atopy with dominant interference of NF-κB signaling

CARD11:

Caspase activation and recruitment domain 11

CFSE:

Carboxyfluorescein succinimidyl ester

CSU:

Chronic spontaneous urticaria

DN:

Dominant-negative

EASI:

Eczema Area and Severity Index

FA:

Food allergies

GOF:

Gain-of-function

IBD:

Inflammatory bowel disease

IGA:

Investigator Global Assessment scale for Atopic Dermatitis

IGRT:

Immunoglobulin replacement therapy

LOF:

Loss-of-function

mTORC1:

Mechanistic target of rapamycin complex 1

MAGUK:

Membrane-associated guanylate kinase

MLR:

Mixed lymphocyte reaction

NF-κB:

Nuclear factor kappa B

SCORAD:

Scoring atopic dermatitis

TCR:

T cell receptor

UAS:

Urticaria Activity Score

References

  1. Kim HO. Targeting cytokines and signaling molecules related to immune pathways in atopic dermatitis: therapeutic implications and challenges. Arch Pharm Res. 2022;45(12):894–908.

    Article  PubMed  CAS  Google Scholar 

  2. Salvati L, Liotta F, Annunziato F, Cosmi L. Therapeutical targets in allergic inflammation. Biomedicines. 2022;10(11):2874. https://doi.org/10.3390/biomedicines10112874.

  3. Dixit C, Thatayatikom A, Pappa H, Knutsen AP. Treatment of severe atopic dermatitis and eosinophilic esophagitis with dupilumab in a 14-year-old boy with autosomal dominant hyper-IgE syndrome. J Allergy Clin Immunol Pract. 2021;9(11):4167–9.

    Article  PubMed  CAS  Google Scholar 

  4. Matucci-Cerinic C, Viglizzo G, Pastorino C, Corcione A, Prigione I, Bocca P, et al. Remission of eczema and recovery of Th1 polarization following treatment with dupilumab in STAT3 hyper IgE syndrome. Pediatr Allergy Immunol. 2022;33(4):e13770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nihal A, Comstock JR, Holland KE, Singh AM, Seroogy CM, Arkin LM. Clearance of atypical cutaneous manifestations of hyper-IgE syndrome with dupilumab. Pediatr Dermatol. 2022;39(6):940–2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shamriz O, Rubin L, Simon AJ, Lev A, Barel O, Somech R, et al. Dominant-negative signal transducer and activator of transcription (STAT)3 variants in adult patients: a single center experience. Front Immunol. 2022;13:1044933.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sogkas G, Hirsch S, Jablonka A, Witte T, Schmidt RE, Atschekzei F. Dupilumab to treat severe atopic dermatitis in autosomal dominant hyper-IgE syndrome. Clin Immunol. 2020;215:108452.

    Article  PubMed  CAS  Google Scholar 

  8. Su CJ, Tseng HC. Treatment efficacy of dupilumab in a hyper-immunoglobulin E syndrome patient with severe atopic dermatitis. JAAD Case Rep. 2021;11:60–2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lu HY, Biggs CM, Blanchard-Rohner G, Fung S-Y, Sharma M, Turvey SE. Germline CBM-opathies: from immunodeficiency to atopy. J Allergy Clin Immunol. 2019;143(5):1661–73.

    Article  PubMed  Google Scholar 

  10. Greil J, Rausch T, Giese T, Bandapalli OR, Daniel V, Bekeredjian-Ding I, et al. Whole-exome sequencing links caspase recruitment domain 11 (CARD11) inactivation to severe combined immunodeficiency. J Allergy Clin Immunol. 2013;131(5):1376-83.e3.

    Article  PubMed  CAS  Google Scholar 

  11. Lu HY, Sharma M, Sharma AA, Lacson A, Szpurko A, Luider J, et al. Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. J Allergy Clin Immunol. 2021;148(6):1559-74 e13.

    Article  PubMed  CAS  Google Scholar 

  12. Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131(2):477-85.e1.

    Article  PubMed  CAS  Google Scholar 

  13. Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med. 2012;209(12):2247–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dadi H, Jones TA, Merico D, Sharfe N, Ovadia A, Schejter Y, et al. Combined immunodeficiency and atopy caused by a dominant negative mutation in caspase activation and recruitment domain family member 11 (CARD11). J Allergy Clin Immunol. 2018;141(5):1818-30.e2.

    Article  PubMed  CAS  Google Scholar 

  15. Dorjbal B, Stinson JR, Ma CA, Weinreich MA, Miraghazadeh B, Hartberger JM, et al. Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J Allergy Clin Immunol. 2019;143(4):1482–95.

    Article  PubMed  CAS  Google Scholar 

  16. Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet. 2017;49(8):1192–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Meitlis I, Allenspach EJ, Bauman BM, Phan IQ, Dabbah G, Schmitt EG, et al. Multiplexed functional assessment of genetic variants in CARD11. Am J Hum Genet. 2020;107(6):1029–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Selected abstracts from the 12th Annual Meeting of the Clinical Immunology Society: 2021 Virtual Annual Meeting: Immune Deficiency and Dysregulation North American Conference. J Clin Immunol. 2021;41(Suppl 1):1–135. https://doi.org/10.1007/s10875-021-01001-x.

  19. Pietzsch L, Korholz J, Boschann F, Sergon M, Dorjbal B, Yee D, et al. Hyper-IgE and carcinoma in CADINS disease. Front Immunol. 2022;13:878989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. CIS Annual Meeting. Immune Deficiency & Dysregulation North American Conference. J Clin Immunol. 2020;40(Suppl 1):90.

    Google Scholar 

  21. Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13(2):109–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2.

    Article  PubMed  CAS  Google Scholar 

  24. Vaseghi-Shanjani M, Smith KL, Sara RJ, Modi BP, Branch A, Sharma M, et al. Inborn errors of immunity manifesting as atopic disorders. J Allergy Clin Immunol. 2021;148(5):1130–9.

    Article  PubMed  CAS  Google Scholar 

  25. Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, et al. Atopy as immune dysregulation: offender genes and targets. J Allergy Clin Immunol Pract. 2022;10(7):1737–56.

    Article  PubMed  CAS  Google Scholar 

  26. Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med. 2018;215(4):1009–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Aronica MA, Mora AL, Mitchell DB, Finn PW, Johnson JE, Sheller JR, et al. Preferential role for NF-kappa B/Rel signaling in the type 1 but not type 2 T cell-dependent immune response in vivo. J Immunol. 1999;163(9):5116–24.

    Article  PubMed  CAS  Google Scholar 

  28. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA. Defective T cell differentiation in the absence of Jnk1. Science. 1998;282(5396):2092–5.

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol. 2014;14(7):435–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yang DD, Conze D, Whitmarsh AJ, Barrett T, Davis RJ, Rincon M, et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity. 1998;9(4):575–85.

    Article  PubMed  CAS  Google Scholar 

  31. Cabanillas B. Dupilumab for atopic dermatitis-from clinical trials to molecular and cellular mechanisms. Dermatitis. 2022. https://doi.org/10.1097/DER.0000000000000905.

  32. Levy R, Beziat V, Barbieux C, Puel A, Bourrat E, Casanova JL, et al. Efficacy of dupilumab for controlling severe atopic dermatitis in a patient with hyper-IgE syndrome. J Clin Immunol. 2020;40(2):418–20.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ollech A, Mashiah J, Lev A, Simon AJ, Somech R, Adam E, et al. Treatment options for DOCK8 deficiency-related severe dermatitis. J Dermatol. 2021;48(9):1386–93.

    Article  PubMed  CAS  Google Scholar 

  34. Chan S, Cornelius V, Cro S, Harper JI, Lack G. Treatment effect of omalizumab on severe pediatric atopic dermatitis: the ADAPT randomized clinical trial. JAMA Pediatr. 2020;174(1):29–37.

    Article  PubMed  Google Scholar 

  35. Heil PM, Maurer D, Klein B, Hultsch T, Stingl G. Omalizumab therapy in atopic dermatitis: depletion of IgE does not improve the clinical course - a randomized, placebo-controlled and double blind pilot study. J Dtsch Dermatol Ges. 2010;8(12):990–8.

    PubMed  Google Scholar 

  36. Iyengar SR, Hoyte EG, Loza A, Bonaccorso S, Chiang D, Umetsu DT, et al. Immunologic effects of omalizumab in children with severe refractory atopic dermatitis: a randomized, placebo-controlled clinical trial. Int Arch Allergy Immunol. 2013;162(1):89–93.

    Article  PubMed  CAS  Google Scholar 

  37. Sahni VN, Balogh EA, Strowd LC, Feldman SR. The evolving atopic dermatitis management landscape. Expert Opin Pharmacother. 2022;23(4):517–26.

    Article  PubMed  Google Scholar 

  38. Charvet E, Bourrat E, Hickman G, Donadieu J, Bellanne-Chantelot C, Jachiet M, et al. Efficacy of dupilumab for controlling severe atopic dermatitis with dominant-negative CARD11 variant. Clin Exp Dermatol. 2021;46(7):1334–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors thank the patients and their families for their participation. This work was supported by the Jeffrey Modell Foundation (A.L.S.), the Center for Pediatric Immunology at St. Louis Children’s Hospital and Washington University, and the Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies at St. Louis Children’s Hospital (M.A.C.). The opinions and assertions expressed herein are those of the authors and are not to be construed as reflecting the views of the Uniformed Services University of the Health Sciences or the US Department of Defense.

Author information

Authors and Affiliations

Authors

Contributions

N.M.D.-C., A.L.S., and J.W.L. developed the concept and collected data. N.M.D.-C. and A.L.S. wrote and revised the original manuscript. B.M.B., G.D.-K., and A.L.S. created expression plasmids, performed transfection experiments, and analyzed associated data. M.A.I., V.M.-P., A.Z., O.S., Y.D.-S., T.D.S., P.S., Y.T., E.M.E., L.P., C.S., D.A., C.C.C., M.A.C., J.D.M., A.W., G.A.-W., and J.W.L. provided clinical care to patients, documented atopic disease severity before and after treatments, and provided key edits to the manuscript.

Corresponding authors

Correspondence to Andrew L. Snow or Jennifer W. Leiding.

Ethics declarations

Ethics Approval

All studies involving human subjects were performed in accordance with site-specific institutional review board-approved protocols, as well as guidelines in the 1964 Declaration of Helsinki and its later amendments, with written informed consent obtained from the patients.

Consent to Participate

All patients are enrolled on institutional protocol(s) allowing for participation in this study.

Consent for Publication

All patients presented in this study are enrolled on institutional protocols(s) allowing for publication and/or provided consent for inclusion in this series.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 15.3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Cabrera, N.M., Bauman, B.M., Iro, M.A. et al. Management of Atopy with Dupilumab and Omalizumab in CADINS Disease. J Clin Immunol 44, 48 (2024). https://doi.org/10.1007/s10875-023-01636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01636-y

Keywords

Navigation