Skip to main content

Advertisement

Log in

Recent Insights in Pyrin Inflammasome Activation: Identifying Potential Novel Therapeutic Approaches in Pyrin-Associated Autoinflammatory Syndromes

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Pyrin is a cytosolic protein encoded by the MEFV gene, predominantly expressed in innate immune cells. Upon activation, it forms an inflammasome, a multimolecular complex that enables the activation and secretion of IL-1β and IL-18. In addition, the Pyrin inflammasome activates Gasdermin D leading to pyroptosis, a highly pro-inflammatory cell death. Four autoinflammatory syndromes are associated with Pyrin inflammasome dysregulation: familial Mediterranean fever, hyper IgD syndrome/mevalonate kinase deficiency, pyrin-associated autoinflammation with neutrophilic dermatosis, and pyogenic arthritis, pyoderma gangrenosum, and acne syndrome. In this review, we discuss recent advances in understanding the molecular mechanisms regulating the two-step model of Pyrin inflammasome activation. Based on these insights, we discuss current pharmacological options and identify a series of existing molecules with therapeutic potential for the treatment of pyrin-associated autoinflammatory syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu Rev Immunol. 2022;40:249–69.

    Article  CAS  PubMed  Google Scholar 

  2. Özen S, Batu ED, Demir S. Familial Mediterranean fever: recent developments in pathogenesis and new recommendations for management. Front Immunol. 2017;8:253.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol. 2020;107:379–91.

    Article  CAS  PubMed  Google Scholar 

  4. Mistry A, Savic S, van der Hilst JCH. Interleukin-1 blockade: an update on emerging indications. BioDrugs. 2017;31:207–21.

    Article  CAS  PubMed  Google Scholar 

  5. French FMF Consortium. A candidate gene for familial Mediterranean fever. Nat Genet. 1997;17(1):25–31. https://doi.org/10.1038/ng0997-25.

    Article  Google Scholar 

  6. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90(4):797–807. https://doi.org/10.1016/s0092-8674(00)80539-5.

    Article  Google Scholar 

  7. Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95:3223–31.

    Article  CAS  PubMed  Google Scholar 

  8. Tidow N, Chen X, Müller C, Kawano S, Gombart AF, Fischel-Ghodsian N, et al. Hematopoietic-specific expression of MEFV, the gene mutated in familial Mediterranean fever, and subcellular localization of its corresponding protein, pyrin. Blood. 2000;95:1451–5.

    Article  CAS  PubMed  Google Scholar 

  9. Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11:961–9.

    Article  CAS  PubMed  Google Scholar 

  10. Cornut M, Bourdonnay E, Henry T. Transcriptional regulation of inflammasomes. Int J Mol Sci. 2020;21(21):8087. https://doi.org/10.3390/ijms21218087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chae JJ, Wood G, Richard K, Jaffe H, Colburn NT, Masters SL, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood. 2008;112:1794–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinert C, Morger D, Djekic A, Grütter MG, Mittl PRE. Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci Rep. 2015;5:10819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, et al. Cryopyrin and Pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13:236–49.

    Article  CAS  PubMed  Google Scholar 

  14. Mangan MSJ, Gorki F, Krause K, Heinz A, Pankow A, Ebert T, et al. Transcriptional licensing is required for Pyrin inflammasome activation in human macrophages and bypassed by mutations causing familial Mediterranean fever. PLoS Biol. 2022;20:e3001351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Gorp H, Saavedra PH, de Vasconcelos NM, Van Opdenbosch N, Vande Walle L, Matusiak M, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proceedings of the National Academy of Sciences. 2016;113:14384–9.

    Article  Google Scholar 

  16. Magnotti F, Lefeuvre L, Benezech S, Malsot T, Waeckel L, Martin A, Kerever S, Chirita D, Desjonqueres M, Duquesne A, Gerfaud-Valentin M, Laurent A, Sève P, Popoff MR, Walzer T, Belot A, Jamilloux Y, Henry T. Pyrin dephosphorylation is sufficient to trigger inflammasome activation in familial Mediterranean fever patients. EMBO Mol Med. 2019;11(11):e10547. https://doi.org/10.15252/emmm.201910547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513:237–41.

    Article  CAS  PubMed  Google Scholar 

  18. Yu OM, Brown JH. G protein-coupled receptor and RhoA-stimulated transcriptional responses: links to inflammation, differentiation, and cell proliferation. Mol Pharmacol. 2015;88:171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.

    Article  CAS  PubMed  Google Scholar 

  20. Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med. 2020;217(1):e20190314. https://doi.org/10.1084/jem.20190314

    Article  CAS  PubMed  Google Scholar 

  21. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17:914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zverina EA, Lamphear CL, Wright EN, Fierke CA. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol. 2012;16:544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113:E4857–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol. 2011;22:663–72.

    Article  CAS  PubMed  Google Scholar 

  25. Jéru I, Papin S, L'Hoste S, Duquesnoy P, Cazeneuve C, Camonis J, et al. Interaction of Pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 2005;52:1848–57.

    Article  PubMed  Google Scholar 

  26. Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of Pyrin activation. Sci Transl Med. 2016;8:332ra45.

    Article  PubMed  Google Scholar 

  27. Malik HS, Magnotti F, Loeven NA, Delgado JM, Kettenbach AN, Henry T, et al. Phosphoprotein phosphatase activity positively regulates oligomeric Pyrin to trigger inflammasome assembly in phagocytes. bioRxiv. 2022;23:485108.

    Google Scholar 

  28. Jamilloux Y, Lefeuvre L, Magnotti F, Martin A, Benezech S, Allatif O, et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology (Oxford). 2018;57:100–11.

    Article  CAS  PubMed  Google Scholar 

  29. Magnotti F, Chirita D, Dalmon S, Martin A, Bronnec P, Sousa J, et al. Steroid hormone catabolites activate the Pyrin inflammasome through a non-canonical mechanism. Cell Rep. 2022;41:111472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richards N, Schaner P, Diaz A, Stuckey J, Shelden E, Wadhwa A, et al. Interaction between Pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276:39320–9.

    Article  CAS  PubMed  Google Scholar 

  31. Papa R, Penco F, Volpi S, Gattorno M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front Immunol. 2020;11:604206.

    Article  CAS  PubMed  Google Scholar 

  32. Loeven NA, Medici NP, Bliska JB. The Pyrin inflammasome in host-microbe interactions. Curr Opin Microbiol. 2020;54:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, et al. Pyrin modulates the intracellular distribution of PSTPIP1. PLoS ONE. 2009;4:e6147.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM, Aksentijevich I, et al. The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood. 2001;98:851–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yu JW, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L, et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell. 2007;28:214–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100:13501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fayez AG, Eldeen GN, Zarouk WA, Hamed K, Ramadan A, Foda BM, et al. Dynamic disequilibrium-based pathogenicity model in mutated pyrin’s B30.2 domain-Casp1/p20 complex. J Genet Eng Biotechnol. 2022;20:31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc Nat Acad Sci. 2006;103:9982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Samukawa S, Yoshimi R, Kirino Y, Nakajima H. The PRY/SPRY domain of pyrin/TRIM20 interacts with β(2)-microglobulin to promote inflammasome formation. Sci Rep. 2021;11:23613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171:6154–63.

    Article  CAS  PubMed  Google Scholar 

  42. Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 2018;215:827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014;10:135–47.

    Article  CAS  PubMed  Google Scholar 

  44. Özen S. Update on the epidemiology and disease outcome of familial Mediterranean fever. Best Pract Res Clin Rheumatol. 2018;32:254–60.

    Article  PubMed  Google Scholar 

  45. Lachmann HJ. Periodic fever syndromes. Best Pract Res Clin Rheumatol. 2017;31:596–609.

    Article  PubMed  Google Scholar 

  46. Aydin O, Egeli BH, Ozdogan H, Ugurlu S. Late-onset familial Mediterranean fever: single-center experience and literature review. Intern Emerg Med. 2022;17:1301–6.

    Article  PubMed  Google Scholar 

  47. Jéru I, Hentgen V, Cochet E, Duquesnoy P, Le Borgne G, Grimprel E, et al. The risk of familial Mediterranean fever in MEFV heterozygotes: a statistical approach. PLoS One. 2013;8:e68431.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van der Hilst JC, Simon A, Drenth JP. Hereditary periodic fever and reactive amyloidosis. Clin Exp Med. 2005;5:87–98.

    Article  PubMed  Google Scholar 

  49. Dodé C, Pêcheux C, Cazeneuve C, Cattan D, Dervichian M, Goossens M, et al. Mutations in the MEFV gene in a large series of patients with a clinical diagnosis of familial Mediterranean fever. Am J Med Genet. 2000;92:241–6.

    Article  PubMed  Google Scholar 

  50. Lachmann HJ, Sengül B, Yavuzşen TU, Booth DR, Booth SE, Bybee A, et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology (Oxford). 2006;45:746–50.

    Article  CAS  PubMed  Google Scholar 

  51. O’Connor C, Kiely L, Heffron C, Ryan J, Bennett M. PAPA-like syndrome with heterozygous mutation in the MEFV gene. Clin Exp Dermatol. 2022;47:642–5.

    Article  PubMed  Google Scholar 

  52. Bader-Meunier B, Martins AL, Charbit-Henrion F, Meinzer U, Belot A, Cuisset L, et al. Mevalonate kinase deficiency: a cause of severe very-early-onset inflammatory bowel disease. Inflamm Bowel Dis. 2021;27:1853–7.

    Article  PubMed  Google Scholar 

  53. Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, et al. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis. 2021;44:1272–87.

    Article  CAS  PubMed  Google Scholar 

  54. Elhani I, Hentgen V, Grateau G, Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: a systematic review. Mol Genet Metab. 2022;136:85–93.

    Article  CAS  PubMed  Google Scholar 

  55. van der Hilst JCH, Bodar EJ, Barron KS, Frenkel J, Drenth JPH, van der Meer JWM, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore). 2008;87:301–10.

    Article  PubMed  Google Scholar 

  56. van der Hilst JC, Frenkel J. Hyperimmunoglobulin D syndrome in childhood. Curr Rheumatol Rep. 2010;12:101–7.

    Article  PubMed  Google Scholar 

  57. Houten SM, Kuis W, Duran M, De Koning TJ, Van Royen-Kerkhof A, Romeijn GJ, et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Gen. 1999;22:175–7.

    Article  CAS  Google Scholar 

  58. Drenth JPH, Cuisset L, Grateau G, Vasseur C, Van De Velde-Visser SD, De Jong JGN, et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat Gen. 1999;22:178–81.

    Article  CAS  Google Scholar 

  59. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97:1232–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Nieuwenhove E, De Langhe E, Dooley J, Van Den Oord J, Shahrooei M, Parvaneh N, et al. Phenotypic analysis of pyrin-associated autoinflammation with neutrophilic dermatosis patients during treatment. Rheumatology (Oxford). 2021;60:5436–46.

    Article  PubMed  Google Scholar 

  61. Moghaddas F, Llamas R, De Nardo D, Martinez-Banaclocha H, Martinez-Garcia JJ, Mesa-Del-Castillo P, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of Pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017;76:2085–94.

    Article  CAS  PubMed  Google Scholar 

  62. Stone DL, Ombrello A, Arostegui JI, Schneider C, Dang V, de Jesus A, et al. Excess serum interleukin-18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis Rheumatol. 2022;74:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holzinger D, Fassl SK, de Jager W, Lohse P, Röhrig UF, Gattorno M, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015;136:1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laberko A, Burlakov V, Maier S, Abinun M, Skinner R, Kozlova A, et al. HSCT is effective in patients with PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome. J Allergy Clin Immunol. 2021;148:250–5.e1.

    Article  CAS  PubMed  Google Scholar 

  65. Belelli E, Passarelli C, Pardeo M, Holzinger D, De Benedetti F, Insalaco A. Case report haematological involvement associated with a mild autoinflammatory phenotype, in two patients carrying the E250K mutation of PSTPIP1. Clin Exp Rheumatol. 2017;35:S113–S5.

    Google Scholar 

  66. Wang Q, Jin T, Jian S, Han X, Song H, Zhou Q, Yu X. A dominant pathogenic MEFV mutation causes atypical pyrin-associated periodic syndromes. JCI Insight. 2023;8(19):e172975. https://doi.org/10.1172/jci.insight.172975

    Article  PubMed  PubMed Central  Google Scholar 

  67. Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou AR, Zacharoulis A, Kolokathis F, et al. Colchicine pharmacokinetics and mechanism of action. Curr Pharm Des. 2018;24:659–63.

    Article  CAS  PubMed  Google Scholar 

  68. Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL. Colchicine: an ancient drug with novel applications. Br J Dermatol. 2018;178:350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zemer D, Revach M, Pras M, Modan B, Schor S, Sohar E, et al. A controlled trial of colchicine in preventing attacks of familial mediterranean fever. N Engl J Med. 1974;291:932–4.

    Article  CAS  PubMed  Google Scholar 

  70. Goldfinger SE. Colchicine for familial Mediterranean fever. N Engl J Med. 1972;287:1302.

    Article  CAS  PubMed  Google Scholar 

  71. Dinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW. Colchicine therapy for familial Mediterranean fever. A double-blind trial. N Engl J Med. 1974;291:934–7.

    Article  CAS  PubMed  Google Scholar 

  72. Lidar M, Scherrmann JM, Shinar Y, Chetrit A, Niel E, Gershoni-Baruch R, et al. Colchicine nonresponsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum. 2004;33:273–82.

    Article  CAS  PubMed  Google Scholar 

  73. Ozen S, Kone-Paut I, Gül A. Colchicine resistance and intolerance in familial Mediterranean fever: definition, causes, and alternative treatments. Semin Arthritis Rheum. 2017;47:115–20.

    Article  CAS  PubMed  Google Scholar 

  74. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008;28:155–83.

    Article  CAS  PubMed  Google Scholar 

  75. Taskiran EZ, Cetinkaya A, Balci-Peynircioglu B, Akkaya YZ, Yilmaz E. The effect of colchicine on Pyrin and Pyrin interacting proteins. J Cell Biochem. 2012;113:3536–46.

    Article  CAS  PubMed  Google Scholar 

  76. Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol. 2002;4:294–301.

    Article  CAS  PubMed  Google Scholar 

  77. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology (Oxford). 2018;57:i4–i11.

    Article  CAS  PubMed  Google Scholar 

  78. van der Hilst J, Moutschen M, Messiaen PE, Lauwerys BR, Vanderschueren S. Efficacy of anti-IL-1 treatment in familial Mediterranean fever: a systematic review of the literature. Biologics. 2016;10:75–80.

    PubMed  PubMed Central  Google Scholar 

  79. Kacar M, Savic S, van der Hilst JCH. The efficacy, safety and tolerability of canakinumab in the treatment of familial mediterranean fever: a systematic review of the literature. J Inflamm Res. 2020;13:141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bodar EJ, van der Hilst JC, Drenth JP, van der Meer JW, Simon A. Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med. 2005;63:260–4.

    CAS  PubMed  Google Scholar 

  81. Brenner M, Ruzicka T, Plewig G, Thomas P, Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161:1199–201.

    Article  CAS  PubMed  Google Scholar 

  82. De Benedetti F, Gattorno M, Anton J, Ben-Chetrit E, Frenkel J, Hoffman HM, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med. 2018;378:1908–19.

    Article  PubMed  Google Scholar 

  83. Ozen S, Demirkaya E, Erer B, Livneh A, Ben-Chetrit E, Giancane G, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75:644–51.

    Article  CAS  PubMed  Google Scholar 

  84. Adamson P, Paterson HF, Hall A. Intracellular localization of the P21rho proteins. J Cell Biol. 1992;119:617–27.

    Article  CAS  PubMed  Google Scholar 

  85. Miyawaki A, Rojasawasthien T, Hitomi S, Aoki Y, Urata M, Inoue A, et al. Oral administration of geranylgeraniol rescues denervation-induced muscle atrophy via suppression of atrogin-1. In Vivo. 2020;34:2345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Preece K, Glávits R, Foster JR, Murbach T, Endres JR, Hirka G, et al. A toxicological evaluation of geranylgeraniol. Regul Toxicol Pharmacol. 2021;124:104975.

    Article  CAS  PubMed  Google Scholar 

  87. Houten SM, Schneiders MS, Wanders RJ, Waterham HR. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J Biol Chem. 2003;278:5736–43.

    Article  CAS  PubMed  Google Scholar 

  88. Irwin JC, Fenning AS, Vella RK. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Transl Res. 2020;215:17–30.

    Article  CAS  PubMed  Google Scholar 

  89. Koneski F, Popovic-Monevska D, Gjorgoski I, Krajoska J, Popovska M, Muratovska I, et al. In vivo effects of geranylgeraniol on the development of bisphosphonate-related osteonecrosis of the jaws. J Craniomaxillofac Surg. 2018;46:230–6.

    Article  PubMed  Google Scholar 

  90. Wu R, Chen H, Chang N, Xu Y, Jiao J, Zhang H. Unlocking the drug potential of the bryostatin family: recent advances in product synthesis and biomedical applications. Chemistry. 2020;26:1166–95.

    Article  CAS  PubMed  Google Scholar 

  91. Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol. 2014;52:237–42.

    Article  PubMed  Google Scholar 

  92. Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007;321:509–16.

    Article  CAS  PubMed  Google Scholar 

  93. Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol. 2019;10:2538.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21:736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guo W, Chen S, Li C, Xu J, Wang L. Application of disulfiram and its metabolites in treatment of inflammatory disorders. Front Pharmacol. 2022;12:795078.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wright C, Moore RD. Disulfiram treatment of alcoholism. Am J Med. 1990;88:647–55.

    Article  CAS  PubMed  Google Scholar 

  97. Gabay C, Fautrel B, Rech J, Spertini F, Feist E, Kötter I, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Annals Rheum Dis. 2018;77:840–7.

    CAS  Google Scholar 

  98. Geerlinks AV, Dvorak AM, Jordan MB, Schiffrin EJ, Behrens EM, Marsh R, et al. A Case of XIAP deficiency successfully managed with tadekinig alfa (rhIL-18BP). J Clin Immunol. 2022;42:901–3.

    Article  PubMed  Google Scholar 

  99. Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–701.

    Article  CAS  PubMed  Google Scholar 

  100. Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr H-A, Hartmann G, et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Am J Physiol –Reg , Integr Comp Physiol. 2001;281:R1264–R73.

    Article  CAS  Google Scholar 

  101. Anti IL-18 (GSK1070806) in Behcet’s disease. https://classic.clinicaltrials.gov/show/NCT03522662.

  102. Chin KY, Ekeuku SO, Trias A. The role of geranylgeraniol in managing bisphosphonate-related osteonecrosis of the jaw. Front Pharmacol. 2022;13:878556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, et al. Putative role of natural products as protein kinase C modulator in different disease conditions. Daru. 2021;29:397–414.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sun MK, Alkon DL. Bryostatin-1: pharmacology and therapeutic potential as a CNS drug. CNS Drug Rev. 2006;12:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kitagawa M, Mukai H, Shibata H, Ono Y. Purification and characterization of a fatty acid-activated protein kinase (PKN) from rat testis. Biochem J. 1995;310(Pt 2):657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yoshinaga C, Mukai H, Toshimori M, Miyamoto M, Ono Y. Mutational analysis of the regulatory mechanism of PKN: the regulatory region of PKN contains an arachidonic acid-Sensitive autoinhibitory domain1. J Biochem. 1999;126:475–84.

    Article  CAS  PubMed  Google Scholar 

  107. Lim WG, Zhu Y, Wang C-H, Tan BJ, Armstrong JS, Dokland T, et al. The last five amino acid residues at the C-terminus of PRK1/PKN is essential for full lipid responsiveness. Cellular Sign. 2005;17:1084–97.

    Article  CAS  Google Scholar 

  108. Kawashima H. Intake of arachidonic acid-containing lipids in adult humans: dietary surveys and clinical trials. Lipids Health Dis. 2019;18:101.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P. Inflammatory caspases: targets for novel therapies. Curr Pharm Des. 2007;13:367–85.

    Article  CAS  PubMed  Google Scholar 

  110. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.

    Article  CAS  PubMed  Google Scholar 

  111. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  113. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.

    Article  CAS  PubMed  Google Scholar 

  114. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koneski F, Popovic-Monevska D, Gjorgoski I, Krajoska J, Popovska M, Muratovska I, Velickovski B, Petrushevska G, Popovski V. In vivo effects of geranylgeraniol on the development of bisphosphonate-related osteonecrosis of the jaws. J Craniomaxillofac Surg. 2018;46(2):230–6. https://doi.org/10.1016/j.jcms.2017.11.007.

    Article  PubMed  Google Scholar 

  117. Li Z, Ji S, Jiang ML, Xu Y, Zhang CJ. The regulation and modification of GSDMD signaling in diseases. Front Immunol. 2022;13:893912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, et al. Pharmacokinetic study of rhIL-18BP and its effect on radiation-induced cytokine changes in mouse serum and intestine. Toxics. 2023;11:35.

    Article  CAS  Google Scholar 

  119. Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med. 2012;18:791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Friedmann T, Roblin R. Gene therapy for human genetic disease? Proposals for genetic manipulation in humans raise difficult scientific and ethical problems. Science. 1972;175:949–55.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Wu ZY. Gene therapy for monogenic disorders: challenges, strategies, and perspectives. J Genet Genomics. 2023;S1673–8527(23):00164–9. https://doi.org/10.1016/j.jgg.2023.08.001.

    Article  Google Scholar 

  122. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. New England J Med. 2017;377:1713–22.

    Article  CAS  Google Scholar 

  123. Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science. 2023;380:eadg6518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  125. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Sign Trans Target Ther. 2020;5:101.

    Article  CAS  Google Scholar 

  126. Weng Y, Xiao H, Zhang J, Liang X-J, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.

    Article  CAS  PubMed  Google Scholar 

  127. Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011;34:755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. The first draft of the manuscript was written by FW and JvdH, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Flore Wouters or Jeroen van der Hilst.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wouters, F., Bogie, J., Wullaert, A. et al. Recent Insights in Pyrin Inflammasome Activation: Identifying Potential Novel Therapeutic Approaches in Pyrin-Associated Autoinflammatory Syndromes. J Clin Immunol 44, 8 (2024). https://doi.org/10.1007/s10875-023-01621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01621-5

Keywords

Navigation