Skip to main content

Advertisement

Log in

Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive combined immunodeficiency. The detailed immune responses are not explored widely. We investigated known and novel immune alterations in lymphocyte subpopulations and their association with clinical symptoms in a well-defined ICF cohort.

Methods

We recruited the clinical findings from twelve ICF1 and ICF2 patients. We performed detailed immunological evaluation, including lymphocyte subset analyses, upregulation, and proliferation of T cells. We also determined the frequency of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes by flow cytometry.

Results

There were ten ICF1 and two ICF2 patients. We identified two novel homozygous missense mutations in the ZBTB24 gene. Respiratory tract infections were the most common recurrent infections among the patients. Gastrointestinal system (GIS) involvements were observed in seven patients. All patients received intravenous immunoglobulin replacement therapy and antibacterial prophylaxis; two died during the follow-up period. Immunologically, CD4+ T-cell counts, percentages of recent thymic emigrant T cells, and naive CD4+ T decreased in two, five, and four patients, respectively. Impaired T-cell proliferation and reduced CD25 upregulation were detected in all patients. These changes were more prominent in CD8+ T cells. GIS involvements negatively correlated with CD3+ T-, CD3+CD4+ T-, CD16+CD56+ NK-cell counts, and CD4+/CD8+ T-cell ratios. Further, we observed expanded cTFH cells and reduced Treg and follicular regulatory T cells with a skewing to a TH2-like phenotype in all tested subpopulations.

Conclusion

The ICF syndrome encompasses various manifestations affecting multiple end organs. Perturbed T-cell responses with increased cTFH and decreased Treg cells may provide further insight into the immune aberrations observed in ICF syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data generated during the study are included in this published article.

Code Availability

Not applicable.

References

  1. Maraschio P, Zuffardi O, DallaFior T, Tiepolo L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet. 1988;25(3):173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Turleau C, Cabanis MO, Girault D, Ledeist F, Mettey R, Puissant H, et al. Multibranched chromosomes in the ICF syndrome: immunodeficiency, centromeric instability, and facial anomalies. Am J Med Genet. 1989;32(3):420–4.

    Article  CAS  PubMed  Google Scholar 

  3. Weemaes CM, Van Tol MJ, Wang J, van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, et al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21(11):1219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. 2012;40(18):9206–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. StremenovaSpegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, J Am Soc Hematol. 2020;136(9):1055–66.

    Google Scholar 

  7. Campos-Sanchez E, Martínez-Cano J, del Pino ML, López-Granados E, Cobaleda C. Epigenetic deregulation in human primary immunodeficiencies. Trends Immunol. 2019;40(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  8. Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet. 2000;9(4):597–604.

    Article  CAS  PubMed  Google Scholar 

  9. Miniou P, Bourc’his D, Gomes DM, Jeanpierre M, Viegas-Péquignot E. Undermethylation of Alu sequences in ICF syndrome: molecular and in situ analysis. Cytogenet Genome Res. 1997;77(3–4):308–13.

    Article  CAS  Google Scholar 

  10. Miniou P, Jeanpierre M, Bourc’his D, Barbosa ACC, Blanquet V, Viegas-Péquignot E. α-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Human Genet. 1997;99:738–45.

    Article  CAS  Google Scholar 

  11. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci. 1999;96(25):14412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Greef JC, Wang J, Balog J, Den Dunnen JT, Frants RR, Straasheijm KR, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Human Genet. 2011;88(6):796–804.

    Article  Google Scholar 

  13. Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet. 2008;17(5):690–709.

    Article  CAS  PubMed  Google Scholar 

  14. Yoon HS, Scharer CD, Majumder P, Davis CW, Butler R, Zinzow-Kramer W, et al. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells. J Immunol. 2012;189(5):2393–403.

    Article  CAS  PubMed  Google Scholar 

  15. Dent AL, Shaffer AL, Yu X, Allman D, Staudt LM. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science. 1997;276(5312):589–92.

    Article  CAS  PubMed  Google Scholar 

  16. Nitta H, Unoki M, Ichiyanagi K, Kosho T, Shigemura T, Takahashi H, et al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients. J Hum Genet. 2013;58(7):455–60.

    Article  CAS  PubMed  Google Scholar 

  17. Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6(1):7870.

    Article  CAS  PubMed  Google Scholar 

  19. Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, et al. Clinical, immunologic and molecular spectrum of patients with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr, Metab Immune Disorders-Drug Targets Formerly Curr Drug Targets-Immune, Endocr Metab Dis. 2021;21(4):664–72.

    Article  CAS  Google Scholar 

  20. Hagleitner M, Lankester A, Maraschio P, Hulten M, Fryns J-P, Schuetz C, et al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet. 2008;45(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  21. Blanco-Betancourt CE, Moncla A, Milili M, Jiang YL, Viegas-Péquignot EM, Roquelaure B, et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood. 2004;103(7):2683–90.

    Article  CAS  PubMed  Google Scholar 

  22. Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, et al. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet. 2001;10(25):2917–31.

    Article  CAS  PubMed  Google Scholar 

  23. Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, et al. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.

    Article  CAS  PubMed  Google Scholar 

  24. Ueda Y, Okano M, Williams C, Chen T, Georgopoulos K, Li E. Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development. 2006;133(6):1183–92.

    Article  CAS  PubMed  Google Scholar 

  25. Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, et al. A novel mutation in a critical region for the methyl donor binding in DNMT3B causes immunodeficiency, centromeric instability, and facial anomalies syndrome (ICF). J Clin Immunol. 2016;36:801–9.

    Article  CAS  PubMed  Google Scholar 

  26. Smeets DF, Moog U, Weemaes CM, Vaes-Peeters G, Merkx GF, Niehof JP, et al. ICF syndrome: a new case and review of the literature. Hum Genet. 1994;94:240–6.

    Article  CAS  PubMed  Google Scholar 

  27. Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(12):2252–5.

    Article  PubMed  Google Scholar 

  28. von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, et al. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9(1):1–6.

    Google Scholar 

  29. Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem. 2012;287(27):22900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183(4):2267–76.

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, et al. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood, J Am Soc Hematol. 2013;121(18):3631–9.

    CAS  Google Scholar 

  32. Hale JS, Youngblood B, Latner DR, Mohammed AUR, Ye L, Akondy RS, et al. Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013;38(4):805–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T cells-related genes are under DNA methylation influence. Int J Mol Sci. 2021;22(13):7144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Correa LO, Jordan MS, Carty SA. DNA methylation in T-cell development and differentiation. Crit Rev Immunol. 2020;40(2):135–56.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, et al. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med. 2020;217(11):e20191688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol: In Practice. 2019;7(8):2790-800.e15.

    Google Scholar 

  37. Kolukisa B, Baser D, Akcam B, Danielson J, BilgicEltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004–19.

    Article  CAS  PubMed  Google Scholar 

  38. Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, et al. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol. 2023;152(1):182-194.e7.

    Article  CAS  PubMed  Google Scholar 

  39. Catak MC, Akcam B, BilgicEltan S, Babayeva R, Karakus IS, Akgun G, et al. Comparing the levels of CTLA-4-dependent biological defects in patients with LRBA deficiency and CTLA-4 insufficiency. Allergy. 2022;77(10):3108–23.

    Article  CAS  PubMed  Google Scholar 

  40. Besci O, Baser D, Ogulur I, Berberoglu AC, Kiykim A, Besci T, et al. Reference values for T and B lymphocyte subpopulations in Turkish children and adults. Turk J Med Sci. 2021;51(4):1814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sefer AP, Abolhassani H, Ober F, Kayaoglu B, BilgicEltan S, Kara A, et al. Expanding the clinical and immunological phenotypes and natural history of MALT1 deficiency. J Clin Immunol. 2022;42(3):634–52.

    Article  CAS  PubMed  Google Scholar 

  42. Kayaoglu B, Kasap N, Yilmaz NS, Charbonnier LM, Geckin B, Akcay A, et al. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J Clin Immunol. 2021;41:769–79.

    Article  CAS  PubMed  Google Scholar 

  43. Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  45. Van den Boogaard M, Thijssen P, Aytekin C, Licciardi F, Kıykım A, Spossito L, et al. Expanding the mutation spectrum in ICF syndrome: evidence for a gender bias in ICF2. Clin Genet. 2017;92(4):380–7.

    Article  PubMed  Google Scholar 

  46. Kutluğ S, Ogur G, Yilmaz A, Thijssen PE, Abur U, Yildiran A. Vesicourethral reflux-induced renal failure in a patient with ICF syndrome due to a novel DNMT3B mutation. Am J Med Genet A. 2016;170(12):3253–7.

    Article  PubMed  Google Scholar 

  47. Björck EJ, Bui TH, Wijmenga C, Grandell U, Nordenskjöld M. Early prenatal diagnosis of the ICF syndrome. Prenat Diagn. 2000;20(10):828–31.

    Article  PubMed  Google Scholar 

  48. Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S, et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun. 2020;11(1):3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin CC, Chen YP, Yang WZ, Shen JCK, Yuan HS. Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 2020;48(7):3949–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao L, Guo Y, Biswal M, Lu J, Yin J, Fang J, et al. Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations. Nat Commun. 2022;13(1):4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barakat S, Ezen E, Devecioglu I, Gezen M, Piepoli S, Erman B. Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J. 2023. https://doi.org/10.1111/febs.16905.

    Article  PubMed  Google Scholar 

  52. Ren R, Hardikar S, Horton JR, Lu Y, Zeng Y, Singh AK, et al. Structural basis of specific DNA binding by the transcription factor ZBTB24. Nucleic Acids Res. 2019;47(16):8388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lal G, Zhang N, Van Der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182(1):259–73.

    Article  CAS  PubMed  Google Scholar 

  54. Wijmenga C, Hansen RS, Gimelli G, Björck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000;16(6):509–17.

    Article  CAS  PubMed  Google Scholar 

  55. Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 2002;277(23):20409–14.

    Article  CAS  PubMed  Google Scholar 

  56. Moarefi AH, Chédin F. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol. 2011;409(5):758–72.

    Article  CAS  PubMed  Google Scholar 

  57. Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2014;24(5):1216–29.

    Article  PubMed  Google Scholar 

  58. Mitchelmore C, Kjærulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms: association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem. 2002;277(9):7598–609.

    Article  CAS  PubMed  Google Scholar 

  59. Kamae C, Imai K, Kato T, Okano T, Honma K, Nakagawa N, et al. Clinical and immunological characterization of ICF syndrome in Japan. J Clin Immunol. 2018;38:927–37.

    Article  CAS  PubMed  Google Scholar 

  60. Harnisch E, Buddingh EP, Thijssen PE, Brooks AS, Driessen GJ, Kersseboom R, et al. Hematopoietic stem cell transplantation in a patient with ICF2 syndrome presenting with EBV-induced hemophagocytic lymphohystiocytosis. Transplantation. 2016;100(7):e35–6.

    Article  PubMed  Google Scholar 

  61. Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, et al. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome. Pediatrics. 2007;120(5):e1341–4.

    Article  PubMed  Google Scholar 

  62. Kraft MT, Mehyar LS, Prince BT, Reshmi SC, Abraham RS, Abu-Arja R. Immune reconstitution after hematopoietic stem cell transplantation in immunodeficiency-centromeric instability-facial anomalies syndrome type 1. J Clin Immunol. 2021;41(5):1089–94.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Burk CM, Coffey KE, Mace EM, Bostwick BL, Chinn IK, Coban-Akdemir ZH, et al. Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome with NK dysfunction and EBV-driven malignancy treated with stem cell transplantation. J Allergy Clin Immunol Pract. 2020;8(3):1103-6.e3.

    Article  PubMed  Google Scholar 

  64. Gossling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, et al. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ehrlich M, Jackson K, Weemaes C. Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis. 2006;1(1):1–9.

    Article  Google Scholar 

  66. Sogkas G, Dubrowinskaja N, Bergmann AK, Lentes J, Ripperger T, Fedchenko M, et al. Progressive immunodeficiency with gradual depletion of B and CD4+ T cells in immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2). Diseases. 2019;7(2):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yehezkel S, Segev Y, Viegas-Pequignot E, Skorecki K, Selig S. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet. 2008;17(18):2776–89.

    Article  CAS  PubMed  Google Scholar 

  68. Pezzolo A, Prigione I, Facchetti P, Castellano E, Viale M, Gimelli G, et al. T-cell apoptosis in ICF syndrome. J Allergy Clin Immunol. 2001;108(2):310–2.

    Article  CAS  PubMed  Google Scholar 

  69. Giardino G, Radwan N, Koletsi P, Morrogh DM, Adams S, Ip W, et al. Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood, J Am Soc Hematol. 2019;133(24):2586–96.

    CAS  Google Scholar 

  70. Ogulur I, Kiykim A, Baser D, Karakoc-Aydiner E, Ozen A, Baris S. Lymphocyte subset abnormalities in pediatric-onset common variable immunodeficiency. Int Arch Allergy Immunol. 2020;181(3):228–37.

    Article  CAS  PubMed  Google Scholar 

  71. Alroqi FJ, Charbonnier L-M, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050-9.e10.

    Article  CAS  PubMed  Google Scholar 

  72. Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993-1006.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, et al. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci. 2002;99(16):10623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tangye SG, Liu Y-J, Aversa G, Phillips JH, de Vries JE. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 1998;188(9):1691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Klein U, Rajewsky K, Küppers R. Human immunoglobulin (Ig) M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 1998;188(9):1679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41(4):253–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Staudacher O, Klein J, Thee S, Ullrich J, Wahn V, Unterwalder N, et al. TREC newborn screening fails to detect immunodeficiency, centromeric instability, and facial anomalies syndrome. J Allergy Clin Immunol Pract. 2023;11(9):2872–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Scientific and Technological Research Council of Turkey (318S202) to S.B.

Author information

Authors and Affiliations

Authors

Contributions

SB and SBE conceptualized and supervised the study. MCC, DB, and YKD performed the experiments. SBE, EN, APS, NK, AK, BK, NAK, MYA, EYG, SK, GH, FD, AY, EKA, AO, SB provided patient care, collected samples, and clinical data. EE and BE performed protein structure analysis. SBE, EN, SB, and MCC wrote the paper. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Safa Baris.

Ethics declarations

Compliance with Ethical Standards

The study was approved by the Ethics Committee of Marmara University, School of Medicine (09.2022.32).

Consent to Participate

Informed consent for participation was obtained from all individuals.

Consent for Publication

Informed publication consent was obtained from all participants.

Conflict of Interest

Dr. Baris obtained a grant from the Scientific and Technological Research Council of Turkey. SBE, EN, MCC, EE, APS, NK, AK, BK, DB, NAK, MYA, EYG, YKD, SK, GH, FD, AY, AO, EKA, and BE have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 530 KB) Gating strategy for T-cell subpopulations.

10875_2023_1620_MOESM2_ESM.pdf

Supplementary file2 (PDF 74 KB) Overall survival curves in ICF patients. (A). Kaplan-Meier curve indicating the probability of survival of patients. End-organ involvements, including lung involvement (B), GIS (C), and autoimmune manifestations (E) and their effect on survival. ns: non-significant. 

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgic Eltan, S., Nain, E., Catak, M.C. et al. Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome. J Clin Immunol 44, 26 (2024). https://doi.org/10.1007/s10875-023-01620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01620-6

Keywords

Navigation