Skip to main content

Advertisement

Log in

Inherited Human BCL10 Deficiencies

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Human BCL10 deficiency causes combined immunodeficiency with bone marrow transplantation as its only curative option. To date, there are four homozygous mutations described in the literature that were identified in four unrelated patients. Here, we describe a fifth patient with a novel mutation and summarize what we have learned about BCL10 deficiency. Due to the severity of the disease, accurate knowledge of its clinical and immunological characteristics is instrumental for early diagnosis and adequate clinical management of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data and material are available if it is required.

References

  1. Hara H, Saito T. CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 2009;30:234–42.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang T, Grabiner B, Zhu Y, Jiang C, Li H, You Y, et al. CARMA3 is crucial for EGFR-induced activation of NF-kappaB and tumor progression. Cancer Res. 2011;71:2183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McAllister-Lucas LM, Jin X, Gu S, Siu K, McDonnell S, Ruland J, et al. The CARMA3-Bcl10-MALT1 signalosome promotes angiotensin II-dependent vascular inflammation and atherogenesis. J Biol Chem. 2010;285:25880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McAllister-Lucas LM, Ruland J, Siu K, Jin X, Gu S, Kim DS, et al. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc Natl Acad Sci USA. 2007;104:139–44.

    Article  CAS  PubMed  Google Scholar 

  5. Bertin J, Wang L, Guo Y, Jacobson MD, Poyet JL, Srinivasula SM, et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem [Internet]. 2001;276:11877–82. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11278692

  6. Hara H, Wada T, Bakal C, Kozieradzki I, Suzuki S, Suzuki N, et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity. 2003;18:763–75.

    Article  CAS  PubMed  Google Scholar 

  7. Ruland J, Duncan GS, Elia A, del Barco BI, Nguyen L, Plyte S, et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure. Cell. 2001;104:33–42.

    Article  CAS  PubMed  Google Scholar 

  8. Ruland J, Duncan GS, Wakeham A, Mak TW. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity. 2003;19:749–58.

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, You Y, Case SM, McAllister-Lucas LM, Wang L, DiStefano PS, et al. A requirement for CARMA1 in TCR-induced NF-kappa B activation. Nat Immunol. 2002;3:830–5.

    Article  CAS  PubMed  Google Scholar 

  10. Fischer KD, Tedford K, Wirth T. New roles for Bcl10 in B-cell development and LPS response. Trends Immunol. 2004;25:113–6.

    Article  CAS  PubMed  Google Scholar 

  11. Yu M, Chen Y, He Y, Podd A, Fu G, Wright JA, et al. Critical role of B cell lymphoma 10 in BAFF-regulated NF-kappaB activation and survival of anergic B cells. J Immunol. 2012;189:5185–93.

    Article  CAS  PubMed  Google Scholar 

  12. Gross O, Grupp C, Steinberg C, Zimmermann S, Strasser D, Hannesschlager N, et al. Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood. 2008;112:2421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malarkannan S, Regunathan J, Chu H, Kutlesa S, Chen Y, Zeng H, et al. Bcl10 plays a divergent role in NK cell-mediated cytotoxicity and cytokine generation. J Immunol. 2007;179:3752–62.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya S, Xue L, Devkota S, Chang E, Morris S, Tobacman JK. Carrageenan-induced colonic inflammation is reduced in Bcl10 null mice and increased in IL-10-deficient mice. Mediat Inflamm. 2013;2013:397642.

    Article  Google Scholar 

  15. Dong W, Liu Y, Peng J, Chen L, Zou T, Xiao H, et al. The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4. J Biol Chem. 2006;281:26029–40.

    Article  CAS  PubMed  Google Scholar 

  16. Goodridge HS, Shimada T, Wolf AJ, Hsu YM, Becker CA, Lin X, et al. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J Immunol. 2009;182:1146–54.

    Article  CAS  PubMed  Google Scholar 

  17. Gringhuis SI, Wevers BA, Kaptein TM, van Capel TM, Theelen B, Boekhout T, et al. Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog. 2011;7:e1001259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marion S, Mazzolini J, Herit F, Bourdoncle P, Kambou-Pene N, Hailfinger S, et al. The NF-kappaB signaling protein Bcl10 regulates actin dynamics by controlling AP1 and OCRL-bearing vesicles. Dev Cell. 2012;23:954–67.

    Article  CAS  PubMed  Google Scholar 

  19. Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity. 2012;36:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tada R, Ikeda F, Aoki K, Yoshikawa M, Kato Y, Adachi Y, et al. Barley-derived beta-D-glucan induces immunostimulation via a dectin-1-mediated pathway. Immunol Lett. 2009;123:144–8.

    Article  CAS  PubMed  Google Scholar 

  21. Xu S, Huo J, Lee KG, Kurosaki T, Lam KP. Phospholipase Cgamma2 is critical for dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem. 2009;284:7038–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharyya S, Dudeja PK, Tobacman JK. Tumor necrosis factor alpha-induced inflammation is increased but apoptosis is inhibited by common food additive carrageenan. J Biol Chem. 2010;285:39511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhattacharyya S, Dudeja PK, Tobacman JK. Lipopolysaccharide activates NF-kappaB by TLR4-Bcl10-dependent and independent pathways in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;295:G784–90.

    Article  CAS  PubMed  Google Scholar 

  24. Werninghaus K, Babiak A, Gross O, Holscher C, Dietrich H, Agger EM, et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med. 2009;206:89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol United States. 2007;8:630–8.

    Article  CAS  Google Scholar 

  26. Ruland J, Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Immunol Nat Rev 2019.

    Book  Google Scholar 

  27. Thome M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol. 2004;4:348–59.

    Article  CAS  PubMed  Google Scholar 

  28. Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2:a003004.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M, et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell. 1999;96:35–45.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Siebert R, Yan M, Hinzmann B, Cui X, Xue L, et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat Genet. 1999;22:63–8.

    Article  CAS  PubMed  Google Scholar 

  31. Spencer J. Aggressive mucosa associated lymphoid tissue lymphomas are associated with mutations in Bcl10. Gut. 1999;44:778–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakagawa M, Seto M, Hosokawa Y. Molecular pathogenesis of MALT lymphoma: two signaling pathways underlying the antiapoptotic effect of API2-MALT1 fusion protein. Leukemia. 2006;20:929–36.

    Article  CAS  PubMed  Google Scholar 

  33. Ye H, Gesk S, Martin-Subero JI, Nader A, Du MQ, Siebert R. BCL10 gene amplification associated with strong nuclear BCL10 expression in a diffuse large B cell lymphoma with IGH-BCL2 fusion. Haematologica. 2006;91:ECR28.

    PubMed  Google Scholar 

  34. Shen L, Liang AC, Lu L, Au WY, Wong KY, Tin PC, et al. Aberrant BCL10 nuclear expression in nasal NK/T-cell lymphoma. Blood. 2003;102:1553–4.

    Article  CAS  PubMed  Google Scholar 

  35. Torres JM, Martinez-Barricarte R, Garcia-Gomez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124:5239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Solis B, Van Den Rym A, Pérez-Caraballo JJ, Al-Ayoubi A, Alazami AM, Lorenzo L, et al. Clinical and immunological features of human BCL10 deficiency. Front Immunol. 2021;12:786572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Den Rym A, Taur P, Martinez-Barricarte R, Lorenzo L, Puel A, Gonzalez-Navarro P, et al. Human BCL10 deficiency due to homozygosity for a rare allele. J Clin Immunol Netherlands. 2020;40:388–98.

    Article  Google Scholar 

  38. Al-Tamemi S, Alhinai Z, Al-Rahbi N, Al-Abdawani R, Al-Yazidi L, Al-Shekaili J, et al. BCL10 loss-of-function novel mutation leading to atypical severe combined immunodeficiency. Clin Immunol United States. 2022;241:109067.

    Article  CAS  Google Scholar 

  39. Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112:973–80.

    Article  PubMed  Google Scholar 

  40. Schatorje EJ, Gemen EF, Driessen GJ, Leuvenink J, van Hout RW, de Vries E. Paediatric reference values for the peripheral T cell compartment. Scand J Immunol. 2012;75:436–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the patient and her family for participating in this study.

Funding

This study was supported by Instituto de Salud Carlos III (ISCIII) through the project PI22/00790 and PI17/00543 and co-funded by the European Union, Ayudas Luis _Alvarez 2022 FIBHULP. BGS was supported by PEJD2019-PRE/BMD-16556 Predoctoral Fellowships CAM and ESID Bridge Fellowship. AVDR received support from Instituto de Salud Carlos III (ISCIII) through the project PI17/00543. RMB was funded in part by the National Institute of Allergy and Infectious Diseases and the National Cancer institute of the National Institutes of Health (grant R21AI171466, #1R01CA269217-01A1, 1R01AI168210-01A1).

Author information

Authors and Affiliations

Authors

Contributions

A.A.A.: physician in charge of the patient’s care and head of the laboratory where the T cell and B cell experiments were performed. B.G.-S. and A.V.D.R.: Sanger sequencing, protein expression, mutagenesis, transfections, and ELISA. E.B.: T and B phenotype. E.L.-C.: group leader, consulting on experimental procedures. S.S.-R., F.C., A.L.-L., and A.d.A.: manuscript comments, advice, and editing. R.M.-B.: manuscript drafting and editing. R.P.d.D.: laboratory head, experiment design, manuscript drafting, and editing.

Corresponding author

Correspondence to Rebeca Perez de Diego.

Ethics declarations

Ethics Approval

The experimental protocol was approved by the ethics committee of La Paz University Hospital (Madrid, Spain) and King Abdulaziz University Hospital (Jeddah, Saudi Arabia).

Consent to Participate

Written informed consent was obtained from the family for participation in this study.

Consent for Publication

Written informed consent was obtained from the family for publication in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaidalani, A.A., García-Solís, B., Bukhari, E. et al. Inherited Human BCL10 Deficiencies. J Clin Immunol 44, 13 (2024). https://doi.org/10.1007/s10875-023-01619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01619-z

Keywords

Navigation