Skip to main content

Advertisement

Log in

A Clinical Conundrum with Diagnostic and Therapeutic Challenge: a Tale of Two Disorders in One Case

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Living organisms are exposed to exogenous and endogenous agents that affect genomic integrity by creating DNA double strand breaks (DSBs). These breaks are repaired by DNA repair proteins to maintain homeostasis. Defects in DNA repair pathways also affect lymphocyte development and maturation, as DSB sites are critical intermediates for rearrangements required for V(D)J recombination. Recent classifications for inborn errors of immunity (IEIs) have listed DNA repair defect genes in a separate group, which suggests the importance of these genes for adaptive and innate immunity. We report an interesting case of a young female (index P1) with mutations in two different genes, DCLRE1C and FANCA, involved in DNA repair pathways. She presented with clinical manifestations attributed to both defects. With the advent of NGS, more than one defect is increasingly identified in patients with IEIs. Familial segregation studies and appropriate functional assays help ascertain the pathogenicity of these mutations and provide appropriate management and genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data is available as electronic supplementary material.

Code Availability

Not applicable.

Abbreviations

ATM:

Ataxia telangiectasia mutated

BLM:

BLM RecQ Like Helicase

CBC:

Complete blood count

DCLRE1C:

DNA Cross-Link Repair 1C

DNMT3B:

DNA Methyltransferase 3 Beta

DSBs:

DNA double strand breaks

GINS1:

GINS Complex Subunit 1

IEIs:

Inborn errors of Immunity

LIG1:

DNA Ligase 1

LIG4:

DNA Ligase 4

MCM10:

Mini chromosome maintenance 10 replication initiation factor

MLPA:

Multiplex Ligation-dependent Probe Amplification

MRE11:

Meiotic recombination 11

NBS1:

Nijmegen breakage syndrome 1

NGS:

Next-generation sequencing

NHEJ1:

Non-homologous end-joining factor 1

PBS:

Phosphate buffer saline

PMS2:

PMS1 Homolog 2, Mismatch Repair System Component

pSMC1:

Phospho-structural maintenance of chromosomes

Rad50:

RAD50 Double Strand Break Repair Protein

RNF168:

E3 ubiquitin-protein ligase RNF168

TCR:

T-cell receptors

V(D)J recombination:

Variability, diversity, and joining recombination

γH2AX:

Gamma H2A histone family member X

FISH:

Fluorescence in situ hybridization

FFP:

Fresh frozen plasma

PRC:

Packed red cell

DLBCL:

Diffuse large B cell lymphoma

References

  1. Gullickson P, Xu YW, Niedernhofer LJ, Thompson EL, Yousefzadeh MJ. The role of DNA repair in immunological diversity: from molecular mechanisms to clinical ramifications. Front Immunol. 2022;13:834889. https://doi.org/10.3389/fimmu.2022.834889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gennery AR. Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. Br Med Bull. 2006;77-78:71–85. https://doi.org/10.1093/bmb/ldl006. Epub 2006 Sep 13

    Article  CAS  PubMed  Google Scholar 

  3. Slatter MA, Gennery AR. Primary immunodeficiencies associated with DNA-repair disorders. Expert Rev Mol Med. 2010;18(12):e9. https://doi.org/10.1017/S1462399410001419.

    Article  CAS  Google Scholar 

  4. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42(7):1473–507. https://doi.org/10.1007/s10875-022-01289-3. Epub 2022 Jun 24. PMID: 35748970; PMCID: PMC9244088

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smogorzewska A. Fanconi anemia: a paradigm for understanding DNA repair during replication. Blood. 2019;134:SCI–32. https://doi.org/10.1182/blood-2019-121229.

    Article  Google Scholar 

  6. de Miranda N F, Björkman A. and Pan-Hammarström Q. DNA repair: the link between primary immunodeficiency and cancer. Ann N Y Acad Sci. 2011; 1246: 50-63. https://doi.org/10.1111/j.1749-6632.2011.06322.x

  7. Van der Burg M, Kalina T, Perez-Andres M, Vlkova M, Lopez-Granados E, Blanco E, et al. The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system. Front Immunol Front. 2019;0:246.

    Article  Google Scholar 

  8. Chaurasia RK, Bhat NN, Gaur N, Shirsath KB, Desai UN, Sapra BK. Establishment and multiparametric-cytogenetic validation of 60Co-gamma-ray induced, phospho-gamma-H2AX calibration curve for rapid biodosimetry and triage management during radiological emergencies. Mutat Res Genet Toxicol Environ Mutagen. 2021;866:503354.

    Article  CAS  PubMed  Google Scholar 

  9. Chaurasia RK, Shirsath KB, Desai UN, Bhat NN, Sapra BK. Establishment of in vitro calibration curve for 60Co-γ-rays induced Phospho-53BP1 foci, rapid biodosimetry and initial triage, and comparative evaluations with γH2AX and cytogenetic assays. Front Public Health. 2022;8(10):845200. https://doi.org/10.3389/fpubh.2022.845200. eCollection 2022.

  10. Chaurasia RK, Shirsath KB, Sapra BK. Protocol for one-step selective lysis of red blood cells and platelets with long-term preservation of white blood cells (human) at ambient temperature. STAR Protoc. 2021;2(4):100834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buchbinder D, Smith MJ, Kawahara M, Cowan MJ, Buzby JS, Abraham RS. Application of a radiosensitivity flow assay in a patient with DNA ligase 4 deficiency. Blood Adv. 2018;2(15):1828–32. https://doi.org/10.1182/bloodadvances.2018016113. PMID: 30061307; PMCID: PMC6093729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiter A, Schrappe M, Tiemann M, Ludwig WD, Yakisan E, Zimmermann M, Mann G, Chott A, Ebell W, Klingebiel T, Graf N, Kremens B, Müller-Weihrich S, Plüss H, Zintl F, Henze G, Riehm H. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306. https://doi.org/10.1182/blood.V94.10.3294.422k12_3294_3306.

    Article  CAS  PubMed  Google Scholar 

  13. Clancy S. DNA damage & repair: mechanisms for maintaining DNA integrity. Nature Educ. 2008;1(1):103.

    Google Scholar 

  14. Volk T, Pannicke U, Reisli I, Bulashevska A, Ritter J, Björkman A, Schäffer AA, Fliegauf M, Sayar EH, Salzer U, Fisch P, Pfeifer D, Di Virgilio M, Cao H, Yang F, Zimmermann K, Keles S, Caliskaner Z, Güner SÜ, et al. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Hum Mol Genet. 2015;24(25):7361–72. https://doi.org/10.1093/hmg/ddv437. Epub 2015 Oct 16. PMID: 26476407; PMCID: PMC4664172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNAdependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002;108:781–94.

    Article  CAS  PubMed  Google Scholar 

  16. Bajin I, Ayvaz DC, Unal S, Ozgur TT, Cetin M, Gumruk F, Tezcan I, de Villartay JP, Sanal O. Atypical combined immunodeficiency due to Artemis defect: a case presenting as hyperimmunoglobulin M syndrome and with LGLL. Mol. Immunol. 2013;56:354–7. [PubMed] [Google Scholar]

    Article  CAS  PubMed  Google Scholar 

  17. Lee PP, Woodbine L, Gilmour KC, Bibi S, Cale CM, Amrolia J, Veys PA, Davies EG, Jeggo PA, Jones A. The many faces of Artemis-deficient combined immunodeficiency: two patients with DCLRE1C mutations and a systematic literature review of genotype-phenotype correlation. Clin. Immunol. 2013;149:464–74.

    Article  CAS  PubMed  Google Scholar 

  18. Nahum A, Somech R, Shubinsky G, Levy J, Broides A. Unusual phenotype in patients with a hypomorphic mutation in the DCLRE1C gene: IgG hypergammaglobulinemia with IgA and IgE deficiency. Clinical Immunology. 2020;213, 108366, ISSN 1521-6616, https://doi.org/10.1016/j.clim.2020.108366

  19. Berland A, Rosain J, Kaltenbach S, Allain V, Mahlaoui N, Melki I, Fievet A, Dubois d'Enghien C, Ouachée-Chardin M, Perrin L, Auger N, Cipe FE, Finocchi A, Dogu F, Suarez F, Moshous D, Leblanc T, Belot A, Fieschi C, et al. PROMIDISα: A T-cell receptor α signature associated with immunodeficiencies caused by V(D)J recombination defects. J Allergy Clin Immunol. 2019;143(1):325–334.e2. https://doi.org/10.1016/j.jaci.2018.05.028. Epub 2018 Jun 12

    Article  CAS  PubMed  Google Scholar 

  20. Poinsignon C, Moshous D, Callebaut I, de Chasseval R, Villey I, de Villartay JP. The metallo-β-lactamase/β-CASP domain of Artemis constitutes the catalytic core for V(D)J recombination. J Exp Med. 2004;199(3):315–21. https://doi.org/10.1084/jem.20031142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Felgentreff K, Lee YN, Frugoni F, Du L, van der Burg M, Giliani S, Tezcan I, Reisli I, Mejstrikova E, de Villartay JP, Sleckman BP, Manis J, Notarangelo LD. Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J Allergy Clin Immunol. 2015;136(1):140–150.e7. https://doi.org/10.1016/j.jaci.2015.03.005. Epub 2015 Apr 25. PMID: 25917813; PMCID: PMC4494888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benitez A, Liu W, Palovcak A, Wang G, Moon J, An K, Kim A, Zheng K, Zhang Y, Bai F, Mazin AV, Pei XH, Yuan F, Zhang Y. FANCA promotes DNA double-strand break repair by catalyzing single-strand annealing and strand exchange. Mol Cell. 2018;71(4):621–628.e4. https://doi.org/10.1016/j.molcel.2018.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Webster A, Sanders M, Patel K, et al. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature. 2022;612:495–502. https://doi.org/10.1038/s41586-022-05253-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toksoy G, UludağAlkaya D, Bagirova G, Avcı Ş, Aghayev A, Günes N, Altunoğlu U, Alanay Y, Başaran S, Berkay E. G, Karaman B, Celkan T, T, Apak H, Kayserili H, Tüysüz B, Uyguner Z, O: Clinical and molecular characterization of Fanconi anemia patients in Turkey. MolSyndromol. 2020;11:183–96. https://doi.org/10.1159/000509838.

    Article  CAS  Google Scholar 

  25. Ceccaldi R, Sarangi P, D’Andrea A D. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17(6):337–334

  26. Schwab R, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell. 2015;60(3):351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, Walkiewicz M, Bi W, Xiao R, Ding Y, Xia F, Beaudet AL, Muzny DM, Gibbs RA, Boerwinkle E, Eng CM, Sutton VR, Shaw CA, Plon SE, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–31. https://doi.org/10.1056/NEJMoa1516767. Epub 2016 Dec 7. PMID: 27959697; PMCID: PMC5335876

    Article  CAS  PubMed  Google Scholar 

  28. Rohan A, See-Tarn W, Vanessa L, Steele R, Slade C, Leung EY, Lehnert K. Clinical implications of digenic inheritance and epistasis in primary immunodeficiency disorders. Front Immunol. 2018;8:2017. https://doi.org/10.3389/fimmu.2017.01965.

    Article  CAS  Google Scholar 

  29. de Miranda NFCC, Peng R, Georgiou K, Chenglin W, Sörqvist EF, Berglund M, Chen L, Gao Z, Lagerstedt K, Lisboa S, Roos F, van Wezel T, Teixeira MR, Rosenquist R, Sundström C, Enblad G, Nilsson M, Zeng Y, Kipling D. Qiang Pan-Hammarström; DNA repair genes are selectively mutated in diffuse large B cell lymphomas. J Exp Med. 2013;210(9):1729–42. https://doi.org/10.1084/jem.20122842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dutzmann CM, Spix C, Popp I, Kaiser M, Erdmann F, Erlacher M, Dörk T, Schindler D, Kalb R, Kratz CP. Cancer in children with Fanconi anemia and ataxia-telangiectasia-a nationwide register-based cohort study in Germany. J Clin Oncol. 2022;40(1):32–9. https://doi.org/10.1200/JCO.21.01495. Epub 2021 Oct 1. PMID: 34597127; PMCID: PMC8683217

    Article  CAS  PubMed  Google Scholar 

  31. Moshous D, Pannetier C, Chasseval R, Fl D, Cavazzana-Calvo M, Romana S, Macintyre E, Canioni D, Brousse N, Fischer A, Casanova JL, Villartay JP. Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J Clin Invest. 2003;111(3):381–7. https://doi.org/10.1172/JCI16774. PMID: 12569164; PMCID: PMC151863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saadat S, Mahmud SN, Qureshi A. Renal infiltration by diffuse large B-cell lymphoma as a rare cause of Fanconi’s syndrome: a case report. Cureus. 2016;8(11):e904. https://doi.org/10.7759/cureus.904. PMID: 28070473; PMCID: PMC5208554

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han SS, Tompkins VS, Son DJ, Han S, Yun H, Kamberos NL, Dehoedt CL, Gu C, Holman C, Tricot G, Zhan F, Janz S. CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Exp Hematol Oncol. 2015;27(4):9. https://doi.org/10.1186/s40164-015-0005-2. PMID: 25838973; PMCID: PMC4383050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We like to thank patient and her family members for their cooperation during this study. Technical support received from laboratory members and clinical information obtained from referring clinicians is duly acknowledged.

Funding

We like to acknowledge Indian Council of Medical Research (ICMR) for Research funding to MM and ICMR-Post doctoral fellowship (PDF) support to PG.

Author information

Authors and Affiliations

Authors

Contributions

Pallavi Gaikwad performed the experiments and analyzed the data. Pallavi Gaikwad and Umair Bargir drafted the manuscript. Shweta Shinde, Neha Jodhawat, Priyanka Setia, Aparna Dalvi, Maya Gupta, Ankita Parab, and Mayuri Goriwale were involved in routine diagnosis and performed the flow cytometric analysis. Amruta Dhawale and Disha Vedpathak were involved in molecular work. Rajesh Chaurasia, Usha Yadav, and Merin George performed chromosomal breakage analysis while Baburao Vundinti, Nagesh Bhat, and B K Sapra supervised the chromosomal findings. Umair Bargir, Reetika Malik Yadav, Pranoti Kini, Madhumati Otiv, and Ratna Sharma helped in collecting clinical details for the entire family. Manisha Madkaikar conceptualized and approved the final draft.

Corresponding author

Correspondence to Manisha Madkaikar.

Ethics declarations

Ethical Approval

This study has been approved by Institutional Ethics committee (IEC)-National Institute of Immunohaematology (ICMR) Mumbai.

Consent to Participate

We have received written informed consent from the patient’s guardians.

Consent for Publication

Informed consent has been signed by the guardians for publishing this data.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 240 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, P., Bargir, U.A., Shinde, S. et al. A Clinical Conundrum with Diagnostic and Therapeutic Challenge: a Tale of Two Disorders in One Case. J Clin Immunol 43, 1891–1902 (2023). https://doi.org/10.1007/s10875-023-01553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-023-01553-0

Keywords

Navigation