Skip to main content

Advertisement

Log in

Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—a Single-Center Experience in New York State

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Newborn screening (NBS) quantifies T cell receptor excision circles (TREC) and identifies infants with T cell lymphopenia (TCL). This study elucidates the demographics, laboratory characteristics, genetics, and clinical outcomes following live viral vaccine administration of term infants with transient or persistent idiopathic TCL.

Methods

A single-center retrospective analysis was performed from September 2010 through June 2018. Laboratory variables were compared with Mann-Whitney tests. Correlations between initial TREC levels and T cell counts were determined by Spearman tests.

Results

Twenty-two transient and 21 persistent TCL infants were identified. Males comprised 68% of the transient and 52% of the persistent TCL cohorts. Whites comprised 23% of the transient and 29% of the persistent cohorts. Median initial TREC levels did not differ (66 vs. 60 TRECs/μL of blood, P = 0.58). The transient cohort had higher median initial CD3+ (2135 vs. 1169 cells/μL, P < 0.001), CD4+ (1460 vs. 866 cells/μL, P < 0.001), and CD8+ (538 vs. 277 cells/μL, P < 0.001) counts. The median age of resolution for the transient cohort was 38 days. Genetic testing revealed 2 genes of interest which warrant further study and several variants of uncertain significance in immunology-related genes in the persistent cohort. 19 transient and 14 persistent subjects received the initial rotavirus and/or MMRV immunization. No adverse reactions to live viral vaccines were reported in either cohort.

Conclusion

Transient and persistent TCL infants differ by demographic, laboratory, and clinical characteristics. Select transient and persistent TCL patients may safely receive live attenuated viral vaccines, but larger confirmatory studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32(3):338–43.

    Article  CAS  PubMed  Google Scholar 

  2. Routes JM, Grossman WJ, Verbsky J, Laessig RH, Hoffman GL, Brokopp CD, et al. Statewide newborn screening for severe T-cell lymphopenia. JAMA. 2009;302(22):2465–70.

    Article  CAS  PubMed  Google Scholar 

  3. Comeau AM, Hale JE, Pai SY, Bonilla FA, Notarangelo LD, Pasternack MS, et al. Guidelines for implementation of population-based newborn screening for severe combined immunodeficiency. J Inherit Metab Dis. 2010;33(Suppl 2):S273–81.

    Article  PubMed  Google Scholar 

  4. Gerstel-Thompson JL, Wilkey JF, Baptiste JC, Navas JS, Pai SY, Pass KA, et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clin Chem. 2010;56(9):1466–74.

    Article  CAS  PubMed  Google Scholar 

  5. Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol. 2011;127(2):535–8.e1–2.

    Article  CAS  PubMed  Google Scholar 

  6. Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York State: experience from the first two years. J Clin Immunol. 2014;34(3):289–303.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buelow BJ, Verbsky JW, Routes JM. Newborn screening for SCID: lessons learned. Expert Rev Hematol. 2016;9(6):579–84.

    Article  CAS  PubMed  Google Scholar 

  9. Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA, et al. Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2).

  10. Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013;11:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32(1):82–8.

    Article  PubMed  Google Scholar 

  12. Verbsky J, Thakar M, Routes J. The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):622–7.

    Article  PubMed  Google Scholar 

  13. Kwan A, Puck JM. History and current status of newborn screening for severe combined immunodeficiency. Semin Perinatol. 2015;39(3):194–205.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Puck JM. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia. Immunol Rev. 2019;287(1):241–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Albin-Leeds S, Ochoa J, Mehta H, Vogel BH, Caggana M, Bonagura V, et al. Idiopathic T cell lymphopenia identified in New York State Newborn Screening. Clin Immunol. 2017;183:36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aluri J, Gupta MR, Dalvi A, Mhatre S, Kulkarni M, Desai M, et al. Lymphopenia and severe combined immunodeficiency (SCID) - think before you ink. Indian J Pediatr. 2019;86:584–9.

    Article  PubMed  Google Scholar 

  17. Rios X, Chinn IK, Orange JS, Hanson CI, Rider NL. T-cell lymphopenia detected by newborn screening in two siblings with an Xq13.1 duplication. Front Pediatr. 2017;5:156.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Patrawala M, Kobrynski L. Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening. Curr Opin Allergy Clin Immunol. 2019;19(6):586–93.

    Article  CAS  PubMed  Google Scholar 

  19. Kobrynski LJ. Identification of non-severe combined immune deficiency T-cell lymphopenia at newborn screening for severe combined immune deficiency. Ann Allergy Asthma Immunol. 2019;123(5):424–7.

    Article  PubMed  Google Scholar 

  20. Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphopenia. Curr Opin Hematol. 2015;22(1):46–52.

    CAS  PubMed  Google Scholar 

  21. Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80.

    Article  PubMed  Google Scholar 

  22. Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol. 2011;193(1):81–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodriges Blanko E, Kadyrova LY, Kadyrov FA. DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. J Biol Chem. 2016;291(17):9203–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology. 2011;141(2):621–32.

    Article  CAS  PubMed  Google Scholar 

  25. Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–82.

    Article  CAS  PubMed  Google Scholar 

  26. Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moylett EH, Wasan AN, Noroski LM, Shearer WT. Live viral vaccines in patients with partial DiGeorge syndrome: clinical experience and cellular immunity. Clin Immunol. 2004;112(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  29. Waters V, Peterson KS, LaRussa P. Live viral vaccines in a DiGeorge syndrome patient. Arch Dis Child. 2007;96(6):519–20.

    Article  Google Scholar 

  30. Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm RE, editors. Stiehm’s Immune Deficiencies. Second ed. London: Elsevier; 2020. p. 357–80.

    Chapter  Google Scholar 

  31. Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;122(4):e325.

    Article  Google Scholar 

  32. Azzari C, Gambineri E, Resti M, Moriondo M, Betti L, Saldias LR, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.

    Article  CAS  PubMed  Google Scholar 

  33. Davis CM, Kancherla VS, Reddy A, Chan W, Yeh HW, Noroski LM, et al. Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol. 2008;122(6):1194–9.

    Article  CAS  PubMed  Google Scholar 

  34. Koup RA, Douek DC. Vaccine design for CD8 T lymphocyte responses. Cold Spring Harb Perspect Med. 2011;1(1):a007252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. https://www.health.ny.gov/statistics/vital_statistics/ accessed 6/20/2020.

  36. Gans MD, Gavrilova T. Retrospective analysis of a New York newborn screen severe combined immunodeficiency referral center. J Clin Immunol. 2020;40(3):456–65.

    Article  CAS  PubMed  Google Scholar 

  37. Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature. 2015;528(7581):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, et al. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain. Genes Dev. 2019;33(11–12):669–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quinn J, Modell V, Holle J, Truty R, Aradhya S, Johnson B, et al. Jeffrey’s insights: Jeffrey Modell Foundation’s global genetic sequencing pilot program to identify specific primary immunodeficiency defects to optimize disease management and treatment. Immunol Res. 2020;68(3):126–34.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69.

    Article  CAS  PubMed  Google Scholar 

  42. Sullivan KE. The scary world of variants of uncertain significance (VUS): a hitchhiker’s guide to interpretation. J Allergy Clin Immunol. 2020. https://doi.org/10.1016/j.jaci.2020.06.011.

  43. Zhang S, Elshaigi O, Daian F, Bae E, Innamorato A, Navetta-Modrov B, et al. Describing single nucleotide polymorphisms (SNPs) transient T cell lymphopenia in the United States Immunodeficiency Network (USIDNET) following infants with low lymphocytes (FILL) program and a single referral center from 2010-2017. J Clin Immunol. 2019;39(Suppl 1):S13.

    Google Scholar 

  44. Gans MD, Saavedra-Matiz CA, Bernstein L. A single nucleotide polymorphism in the T-cell receptor excision circle. J Allergy Clin Immunol Pract. 2020;8(2):803–5.e1.

    Article  PubMed  Google Scholar 

  45. Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139(3):733–42.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol. 2019;144(6):1674–83.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shoenfeld Y, Alkan ML, Asaly A, Carmeli Y, Katz M. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Haematol. 1988;41(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  48. Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318–29.

    CAS  PubMed  Google Scholar 

  49. Zonios DI, Falloon J, Bennett JE, Shaw PA, Chaitt D, Baseler MW, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112(2):287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Busch MP, Valinsky JE, Paglieroni T, Prince HE, Crutcher GJ, Gjerset GF, et al. Screening blood donors for idiopthic CD4+ T-lymphocyotpenia. Transfusion. 1994;34(3):192–7.

    Article  CAS  PubMed  Google Scholar 

  51. Lisco A, Freeman AF, Sereti I. Idiopathic CD4 lymphopenia. In: Sullivan KE, Stiehm RE, editors. Stiehm’s immune deficiencies. Second ed. London: Elsevier; 2020. p. 381–92.

    Chapter  Google Scholar 

  52. Walker UA, Warnatz K. Idiopathic CD4 lymphocytopenia. Curr Opin Rheumatol. 2006;18(4):389–95.

    Article  PubMed  Google Scholar 

  53. Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, et al. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore). 2014;93(2):61–72.

    Article  CAS  Google Scholar 

  54. Kuo CY, Garcia-Lloret MI, Slev P, Bohnsack JF, Chen K. Profound T-cell lymphopenia associated with prenatal exposure to purine antagonists detected by TREC newborn screening. J Allergy Clin Immunol Pract. 2017;5(1):198–200.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Christopher League for assistance with preparing figures for the manuscript.

Authorship Contributions

AMJ, RS, DWR, and VRB designed the study. AMJ, OE, EH, SZ, FD, EB, AI, CC, BNM, RS, DWR, and VRB contributed to data collection and analysis. AMJ, EH, RS, DWR, and VRB contributed to manuscript preparation. All authors reviewed the manuscript.

Funding

This was supported by a grant from the Immune Deficiency Foundation to Dr. Jongco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artemio M. Jongco III.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The Northwell Health Institutional Review Board approved this study, Protocol 19-0150-CCMC.

Consent to Participate

The Northwell Health Institution Review Board granted a waiver of informed consent and assent for this study.

Consent to Publish

Not applicable.

Disclaimer

The Immune Deficiency Foundation had no input on study design, data collection or analysis, and manuscript preparation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Earlier versions of this data were presented as posters and platform presentations at the annual meetings of the American Academy of Allergy, Asthma & Immunology, and the Clinical Immunology Society.

Supplementary Information

Supplemental Figure 1

Initial laboratory parameters. Median CD19+ (A), CD16/56+ (B) counts. (PNG 4948 kb).

High resolution image (TIFF 1521 kb).

Supplemental Figure 2

Initial TREC and T cell counts do not correlate. Transient (A) and Persistent (B) cohort. For the transient cohort, Spearman coefficients (r) were as follows: CD3+ r = 0.06, P = 0.81, CD4+ r = −0.01, P = 0.99, CD8+ r = 0.05, P = 0.83. For the persistent cohort, Spearman coefficients were as follows: CD3+ r = 0.27, P = 0.24, CD4+ r = 0.32, P = 0.15, CD8+ r = 0.13, P = 0.57. TREC = T cell receptor excision circle (PNG 4948 kb).

High resolution image (TIFF 1521 kb).

Supplemental Figure 3

Longitudinal B and NK cell counts for transient and persistent cohorts plotted against the 10th and 90th percentiles for aged matched controls. Transient cohort values are plotted for CD19+ B (A) and CD16/56+ NK (B). Persistent cohort values are plotted for CD19+ B (C) and CD16/56+ NK (D). Subject T22 did not have his CD16/56+ NK cells measured and thus is not represented on Plot B. NK = natural killer (PNG 4948 kb).

High resolution image (TIFF 1521 kb).

Supplemental Table 1

(DOCX 152 kb).

Supplemental Table 2

(DOCX 40.8 kb).

Supplemental Table 3

Longitudinal CD3+, CD4+, CD8+, CD19+ and CD16/56+ counts for the persistent (Tab 1) and Transient (Tab 2) TCL cohorts. Blacked out boxes indicate the absence of data for that subject. WNL indicates that the records stated that the T cell counts had normalized for that subject. (XLSX 34 kb).

Supplemental Table 4

(DOCX 32.5 kb).

Supplemental Table 5

(DOCX 108 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jongco, A.M., Sporter, R., Hon, E. et al. Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—a Single-Center Experience in New York State. J Clin Immunol 41, 610–620 (2021). https://doi.org/10.1007/s10875-020-00957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00957-6

Keywords

Navigation