Skip to main content

Advertisement

Log in

Primary Immunodeficiencies in India: Molecular Diagnosis and the Role of Next-Generation Sequencing

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Primary immunodeficiency diseases (PIDs) are a group of clinically and genetically heterogeneous disorders showing ethnic and geographic diversities. Next-generation sequencing (NGS) is a comprehensive tool to diagnose PID. Although PID is common in India, data on the genetic spectrum of PIDs are limited due to financial restrictions. The study aims to characterize the clinical and genetic spectrum of PID patients in India and highlight the importance of a cost-effective targeted gene panel sequencing approach for PID in a resource-limited setting. The study includes 229 patients with clinical and laboratory features suggestive of PIDs. Mutation analysis was done by Sanger sequencing and NGS targeting a customized panel of genes. Pathogenic variants were identified in 97 patients involving 42 different genes with BTK and IL12RB1 being the most common mutated genes. Autosomal recessive and X-linked recessive inheritance were seen in 51.6% and 23.7% of patients. Mendelian susceptibility to mycobacterial diseases (MSMD) and IL12RB1 mutations was more common in our population compared to the Western world and the Middle East. Two patients with hypomorphic RAG1 mutations and one female with skewed CYBB mutation were also identified. Another 40 patients had variants classified as variants of uncertain significance (VUS). The study shows that targeted NGS is an effective diagnostic strategy for PIDs in countries with limited diagnostic resources. Molecular diagnosis of PID helps in genetic counseling and to make therapeutic decisions including the need for a stem cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the study findings are available from the corresponding author upon reasonable request.

References

  1. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.

    Article  PubMed  Google Scholar 

  2. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2018;38(1):129–43.

    Article  PubMed  Google Scholar 

  3. Yu JE, Orange JS, Demirdag YY. New primary immunodeficiency diseases: context and future. Curr Opin Pediatr. 2018;30(6):806–20.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, et al. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol. 2016;137(6):1780–7.

    Article  CAS  PubMed  Google Scholar 

  5. Notarangelo LD, Sorensen R. Is it necessary to identify molecular defects in primary immunodeficiency disease? J Allergy Clin Immunol. 2008;122(6):1069–73.

    Article  CAS  PubMed  Google Scholar 

  6. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Tamemi S, Naseem SUR, Al-Siyabi N, El-Nour I, Al-Rawas A, Dennison D. Primary immunodeficiency diseases in Oman: 10-year experience in a tertiary care hospital. J Clin Immunol. 2016;36(8):785–92.

    Article  CAS  PubMed  Google Scholar 

  8. Aghamohammadi A, Mohammadinejad P, Abolhassani H, Mirminachi B, Movahedi M, Gharagozlou M, et al. Primary immunodeficiency disorders in Iran: update and new insights from the third report of the national registry. J Clin Immunol. 2014;34(4):478–90.

    Article  CAS  PubMed  Google Scholar 

  9. Errante PR, Franco JL, Espinosa-Rosales FJ, Sorensen R, Condino-Neto A. Advances in primary immunodeficiency diseases in Latin America: epidemiology, research, and perspectives. Ann N Y Acad Sci. 2012;1250:62–72.

    Article  CAS  PubMed  Google Scholar 

  10. Bustamante J, Boisson-Dupuis S, Abel L, Casanova J-L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26(6):454–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Herz W, Chou J, Delmonte OM, Massaad MJ, Bainter W, Castagnoli R, et al. Comprehensive genetic results for primary immunodeficiency disorders in a highly consanguineous population. Front Immunol. 2018;9:3146.

    Article  CAS  PubMed  Google Scholar 

  12. Barbouche M-R, Mekki N, Ben-Ali M, Ben-Mustapha I. Lessons from genetic studies of primary immunodeficiencies in a highly consanguineous population. Front Immunol. 2017;8:737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gennery AR. The evolving landscape of primary immunodeficiencies. J Clin Immunol. 2016;36(4):339–40.

    Article  PubMed  Google Scholar 

  14. Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, et al. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol. 2014;34(4):398–424.

    CAS  PubMed  Google Scholar 

  15. Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69.

    Article  CAS  PubMed  Google Scholar 

  16. Heimall JR, Hagin D, Hajjar J, Henrickson SE, Hernandez-Trujillo HS, Tan Y, et al. Use of genetic testing for primary immunodeficiency patients. J Clin Immunol. 2018;38(3):320–9.

    Article  CAS  PubMed  Google Scholar 

  17. Platt C, Geha RS, Chou J. Gene hunting in the genomic era: approaches to diagnostic dilemmas in patients with primary immunodeficiencies. J Allergy Clin Immunol. 2014;134(2):262–8.

    Article  PubMed  Google Scholar 

  18. Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, et al. Primary immunodeficiency diseases: genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139(1):232–45.

    Article  PubMed  Google Scholar 

  19. Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front Pediatr. 2019;7:295.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chou J, Ohsumi TK, Geha RS. Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2012;12(6):623–8.

    Article  CAS  PubMed  Google Scholar 

  21. Shearer W, Rosenblatt H, Gelman R, Oyomopito R, Plaeger S, Stiehm ER. Lymphocyte subsets in healthy children from birth through 18 years of age— the pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112:973–80.

    Article  PubMed  Google Scholar 

  22. Chng WJ, Tan GB, Kuperan P. Establishment of adult peripheral blood lymphocyte subset reference range for an Asian population by single-platform flow cytometry: influence of age, sex, and race and comparison with other published studies. Clin Diagn Lab Immunol. 2004;11:168–73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arun AK, Senthamizhselvi A, Hemamalini S, Edison ES, Korula A, Fouzia NA, et al. Spectrum of ELANE mutations in congenital neutropenia: a single-centre study in patients of Indian origin. J Clin Pathol. 2018;71(12):1046–50.

    Article  CAS  PubMed  Google Scholar 

  24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chang X, Wang K. wANNOVAR: annotating genetic variants for personal genomes via the web. J Med Genet. 2012;49(7):433–6.

    Article  PubMed  Google Scholar 

  26. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics. 2018;34(3):511–3.

    Article  CAS  PubMed  Google Scholar 

  29. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575–6.

    Article  CAS  PubMed  Google Scholar 

  30. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.

    Article  CAS  PubMed  Google Scholar 

  31. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Geetha TS, Lingappa L, Jain AR, Govindan H, Mandloi N, Murugan S, et al. A novel splice variant in EMC1 is associated with cerebellar atrophy, visual impairment, psychomotor retardation with epilepsy. Mol Genet Genomic Med. 2017;6(2):282–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Woon S-T, Ameratunga R. Comprehensive genetic testing for primary immunodeficiency disorders in a tertiary hospital: 10-year experience in Auckland, New Zealand. Allergy, Asthma Clin Immunol. 2016;12:65.

    Article  CAS  Google Scholar 

  35. Madkaikar M, Mishra A, Desai M, Gupta M, Mhatre S, Ghosh K. Comprehensive report of primary immunodeficiency disorders from a tertiary care center in India. J Clin Immunol. 2013;33(3):507–12.

    Article  CAS  PubMed  Google Scholar 

  36. Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, et al. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(6):1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Madkaikar M, Gupta M, Chavan S, Italia K, Desai M, Merchant R, et al. X-linked hyper IgM syndrome: clinical, immunological and molecular features in patients from India. Blood Cells Mol Dis. 2014;53(3):99–104.

    Article  CAS  PubMed  Google Scholar 

  38. Lee W-I, Torgerson TR, Schumacher MJ, Yel L, Zhu Q, Ochs HD. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105(5):1881–90.

    Article  CAS  PubMed  Google Scholar 

  39. Woellner C, Gertz EM, Schäffer AA, Lagos M, Perro M, Glocker E-O, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(2):424–432.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mogensen TH. STAT3 and the hyper-IgE syndrome. JAKSTAT. 2013;2(2):e23435.

    PubMed  PubMed Central  Google Scholar 

  41. Forbes LR, Milner J, Haddad E. STAT3: a year in review. Curr Opin Hematol. 2016;23(1):23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Horiuchi T, Tsukamoto H, Morita C, Sawabe T, Harashima S, Nakashima H, et al. Mannose binding lectin (MBL) gene mutation is not a risk factor for systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in Japanese. Genes Immun. 2000;1(7):464–6.

    Article  CAS  PubMed  Google Scholar 

  43. Garred P, Larsen F, Madsen HO, Koch C. Mannose-binding lectin deficiency--revisited. Mol Immunol. 2003;40(2–4):73–84.

    Article  CAS  PubMed  Google Scholar 

  44. Holinski-Feder E, Weiss M, Brandau O, Jedele KB, Nore B, Bäckesjö CM, et al. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics. 1998 Feb;101(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  45. Conley ME, Mathias D, Treadaway J, Minegishi Y, Rohrer J. Mutations in btk in patients with presumed X-linked agammaglobulinemia. Am J Hum Genet. 1998;62(5):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Väliaho J, Faisal I, Ortutay C, Smith CIE, Vihinen M. Characterization of all possible single-nucleotide change caused amino acid substitutions in the kinase domain of Bruton tyrosine kinase. Hum Mutat. 2015;36(6):638–47.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang K, Chandrakasan S, Chapman H, Valencia CA, Husami A, Kissell D, et al. Synergistic defects of different molecules in the cytotoxic pathway lead to clinical familial hemophagocytic lymphohistiocytosis. Blood. 2014;124(8):1331–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arunachalam AK, Suresh H, Edison ES, Korula A, Aboobacker FN, George B, et al. Screening of genetic variants in ELANE mutation negative congenital neutropenia by next generation sequencing. J Clin Pathol. 2020;73(6):322–7.

    Article  PubMed  Google Scholar 

  49. Pasquet M, Bellanné-Chantelot C, Tavitian S, Prade N, Beaupain B, Larochelle O, et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood. 2013;121(5):822–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arunachalam AK, Sumithra S, Maddali M, Fouzia NA, Abraham A, George B, et al. Molecular characterization of G6PD deficiency: report of three novel G6PD variants. Indian J Hematol Blood Transfus. 2020;36(2):349–55.

    Article  PubMed  Google Scholar 

  52. Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC. X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol. 2008;129(2):372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kulkarni M, Hule G, de Boer M, van Leeuwen K, Kambli P, Aluri J, et al. Approach to molecular diagnosis of chronic granulomatous disease (CGD): an experience from a large cohort of 90 Indian patients. J Clin Immunol. 2018;38(8):898–916.

    Article  CAS  PubMed  Google Scholar 

  54. Döffinger R, Altare F, Casanova JL. Genetic heterogeneity of Mendelian susceptibility to mycobacterial infection. Microbes Infect. 2000;2(13):1553–7.

    Article  PubMed  Google Scholar 

  55. Bandari AK, Muthusamy B, Bhat S, Govindaraj P, Rajagopalan P, Dalvi A, et al. A novel splice site mutation in IFNGR2 in patients with primary immunodeficiency exhibiting susceptibility to mycobacterial diseases. Front Immunol. 2019;10:1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, et al. Severe early-onset combined immunodeficiency due to heterozygous gain-of-function mutations in STAT1. J Clin Immunol. 2016;36(7):641–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharfe N, Nahum A, Newell A, Dadi H, Ngan B, Pereira SL, et al. Fatal combined immunodeficiency associated with heterozygous mutation in STAT1. J Allergy Clin Immunol. 2014;133(3):807–17.

    Article  CAS  PubMed  Google Scholar 

  58. Eren Akarcan S, Ulusoy Severcan E, Edeer Karaca N, Isik E, Aksu G, Migaud M, et al. Gain-of-function mutations in STAT1: a recently defined cause for chronic mucocutaneous candidiasis disease mimicking combined immunodeficiencies. Case Reports Immunol. 2017;2017:2846928.

    PubMed  PubMed Central  Google Scholar 

  59. Zeng H, Tao Y, Chen X, Zeng P, Wang B, Wei R, et al. Primary immunodeficiency in south China: clinical features and a genetic subanalysis of 138 children. J Investig Allergol Clin Immunol. 2013;23(5):302–8.

    CAS  PubMed  Google Scholar 

  60. Arunachalam AK, Suresh H, Mathews V, Balasubramanian P. Allele Specific PCR: A cost effective screening method for MPL mutations in myeloproliferative neoplasms. Indian J Hematol Blood Transfus. 2018;34(4):765–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mu W, Lu H-M, Chen J, Li S, Elliott AM. Sanger confirmation is required to achieve optimal sensitivity and specificity in next-generation sequencing panel testing. J Mol Diagn. 2016;18(6):923–32.

    Article  CAS  PubMed  Google Scholar 

  62. Nijman IJ, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133(2):529–34.

    Article  CAS  PubMed  Google Scholar 

  63. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312(18):1880–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We respectfully thank all the patients and their families for their participation in this study. We extend our gratitude to Dr. Michael Lenardo, NIH, for his support in initiating this study at our center and for his expert comments and critical review of the manuscript. We thank Mr. Neelakandan and other staffs of the molecular laboratory for the technical support and carrying out molecular analysis. Validation of our bioinformatics analysis and results was performed by Varminer—a variant identification and interpretation tool developed by Medgenome Labs, Bangalore, India.

Funding

This study was in part supported by the department educational funds. No specific grant was received from any funding agency—private, or otherwise.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AKA, MM, and ESE. Clinical data and correlation were performed by FNA, AK, VM, and BG. The first draft of the manuscript was written by AKA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Eunice Sindhuvi Edison.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

The study was approved by the institutional research board (IRB Min No:9501 dated 15.02.2017). All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research and ethics committee. The study and the laboratory tests have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 15 kb).

ESM 2

(XLSX 30 kb).

ESM 3

(XLSX 18 kb).

ESM 4

(XLSX 20 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunachalam, A.K., Maddali, M., Aboobacker, F.N. et al. Primary Immunodeficiencies in India: Molecular Diagnosis and the Role of Next-Generation Sequencing. J Clin Immunol 41, 393–413 (2021). https://doi.org/10.1007/s10875-020-00923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00923-2

Keywords

Navigation