Lymphoma Predisposing Gene in an Extended Family: CD70 Signaling Defect

Abstract

Genome-wide sequencing studies in pediatric cancer cohorts indicate that about 10% of patients have germline mutations within cancer predisposition genes. Within this group, primary immune deficiencies take the priority regarding the vulnerability of the patients to infectious agents and the difficulties of cancer management. On the other hand, early recognition of these diseases may offer specific targeted therapies and hematopoietic stem cell transplantation as an option. Besides therapeutic benefits, early diagnosis will provide genetic counseling for the family members. Within this context, an extended family with multiple consanguineous marriages and affected individuals, who presented with combined immune deficiency (CID) and/or Hodgkin lymphoma phenotype, were examined by exome sequencing. A pathogenic homozygous missense CD70 variation was detected (NM_001252.5:c332C>T) in concordance with CD70 phenotype and familial segregation was confirmed. CD70 variations in patients with CID and malignancy have very rarely been reported. This paper reports extended family with multiple affected members with CID and malignancy carrying a missense CD70 variation, and reviews the rare cases reported in the literature. Primary immune deficiencies appear to be a potential cause for pediatric cancers. Better focusing on these inborn disorders to prevent or make an early diagnosis of malignant transformation and reduce mortalities is important.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173(4):1017–37.

    PubMed  Google Scholar 

  2. 2.

    Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws HJ, et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119(5):1350–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26(5):963–71.

    CAS  PubMed  Google Scholar 

  4. 4.

    Cagdas D, et al. Course of IL-2-inducible T-cell kinase deficiency in a family: lymphomatoid granulomatosis, lymphoma and allogeneic bone marrow transplantation in one sibling; and death in the other. Bone Marrow Transplant. 2017;52(1):126–9.

    CAS  PubMed  Google Scholar 

  5. 5.

    Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475(7357):471–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Patiroglu T, Haluk Akar H, Gilmour K, Unal E, Akif Ozdemir M, Bibi S, et al. A case of XMEN syndrome presented with severe auto-immune disorders mimicking autoimmune lymphoproliferative disease. Clin Immunol. 2015;159(1):58–62.

    CAS  PubMed  Google Scholar 

  9. 9.

    Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014;510(7504):288–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Alkhairy OK, Perez-Becker R, Driessen GJ, Abolhassani H, van Montfrans J, Borte S, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol. 2015;136(3):703–12 e10.

    CAS  PubMed  Google Scholar 

  11. 11.

    Abolhassani H, Edwards ESJ, Ikinciogullari A, Jing H, Borte S, Buggert M, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med. 2017;214(1):91–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Caorsi R, et al. CD70 deficiency due to a novel mutation in a patient with severe chronic EBV infection presenting as a periodic fever. Front Immunol. 2017;8:2015.

    PubMed  Google Scholar 

  13. 13.

    Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214(1):73–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Moshous D, Martin E, Carpentier W, Lim A, Callebaut I, Canioni D, et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603.

    CAS  PubMed  Google Scholar 

  15. 15.

    Punwani D, Pelz B, Yu J, Arva NC, Schafernak K, Kondratowicz K, et al. Coronin-1A: immune deficiency in humans and mice. J Clin Immunol. 2015;35(2):100–7.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, et al. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol. 2016;17(12):1352–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Platt CD, Fried AJ, Hoyos-Bachiloglu R, Usmani GN, Schmidt B, Whangbo J, et al. Combined immunodeficiency with EBV positive B cell lymphoma and epidermodysplasia verruciformis due to a novel homozygous mutation in RASGRP1. Clin Immunol. 2017;183:142–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Alosaimi MF, Hoenig M, Jaber F, Platt CD, Jones J, Wallace J, et al. Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. J Allergy Clin Immunol. 2019;144(2):574–83 e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Schäffer AA, et al. The phenotype of human STK4 deficiency. Blood. 2012;119(15):3450–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sherkat R, Sabri MR, Dehghan B, Bigdelian H, Reisi N, Afsharmoghadam N, et al. EBV lymphoproliferative-associated disease and primary cardiac T-cell lymphoma in a STK4 deficient patient: a case report. Medicine (Baltimore). 2017;96(48):e8852.

    Google Scholar 

  21. 21.

    Park J, Yang J, Wenzel AT, Ramachandran A, Lee WJ, Daniels JC, et al. Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood. 2017;130(12):1430–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med. 2016;213(11):2413–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Uchida Y, Yoshimitsu M, Kamada Y, Arima N, Ishitsuka K. A novel recurrent gain-of-function mutation of Rltpr Q575E in adult T cell leukemia/lymphoma. 2019;134(Supplement_1):1489 Ash Publications.

  24. 24.

    Kuehn HS, Niemela JE, Rangel-Santos A, Zhang M, Pittaluga S, Stoddard JL, et al. Loss-of-function of the protein kinase C delta (PKCdelta) causes a B-cell lymphoproliferative syndrome in humans. Blood. 2013;121(16):3117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Salzer E, Santos-Valente E, Klaver S, Ban SA, Emminger W, Prengemann NK, et al. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C delta. Blood. 2013;121(16):3112–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bousfiha A, Jeddane L, Picard C, al-Herz W, Ailal F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66–81.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Latour S, Winter S. Inherited immunodeficiencies with high predisposition to Epstein-Barr virus-driven lymphoproliferative diseases. Front Immunol. 2018;9:1103.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet. 2020;139(6–7):885–901.

    PubMed  Google Scholar 

  29. 29.

    Tangye SG, Latour S. Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood. 2020;135(9):644–55.

    PubMed  Google Scholar 

  30. 30.

    Goodwin RG, Alderson MR, Smith CA, Armitage RJ, VandenBos T, Jerzy R, et al. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell. 1993;73(3):447–56.

    CAS  PubMed  Google Scholar 

  31. 31.

    Bowman MR, et al. The cloning of CD70 and its identification as the ligand for CD27. J Immunol. 1994;152(4):1756–61.

    CAS  PubMed  Google Scholar 

  32. 32.

    Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA, et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol. 1993;23(10):2631–41.

    CAS  PubMed  Google Scholar 

  33. 33.

    Brown GR, et al. CD27-CD27 ligand/CD70 interactions enhance alloantigen-induced proliferation and cytolytic activity in CD8+ T lymphocytes. J Immunol. 1995;154(8):3686–95.

    CAS  PubMed  Google Scholar 

  34. 34.

    Hintzen RQ, et al. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J Immunol. 1995;154(6):2612–23.

    CAS  PubMed  Google Scholar 

  35. 35.

    Hendriks J, Gravestein LA, Tesselaar K, van Lier RAW, Schumacher TNM, Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol. 2000;1(5):433–40.

    CAS  PubMed  Google Scholar 

  36. 36.

    Arens R, Tesselaar K, Baars PA, van Schijndel GMW, Hendriks J, Pals ST, et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNgamma-mediated B cell depletion. Immunity. 2001;15(5):801–12.

    CAS  PubMed  Google Scholar 

  37. 37.

    van Montfrans JM, Hoepelman AIM, Otto S, van Gijn M, van de Corput L, de Weger RA, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129(3):787–93 e6.

    PubMed  Google Scholar 

  38. 38.

    Nolte MA, van Olffen RW, van Gisbergen KPJM, van Lier RAW. Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev. 2009;229(1):216–31.

    CAS  PubMed  Google Scholar 

  39. 39.

    Croft M. The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol. 2009;9(4):271–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Lens SM, et al. Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol. 1999;106(2):491–503.

    CAS  PubMed  Google Scholar 

  41. 41.

    Ranheim EA, Cantwell MJ, Kipps TJ. Expression of CD27 and its ligand, CD70, on chronic lymphocytic leukemia B cells. Blood. 1995;85(12):3556–65.

    CAS  PubMed  Google Scholar 

  42. 42.

    McEarchern JA, Smith LM, McDonagh CF, Klussman K, Gordon KA, Morris-Tilden CA, et al. Preclinical characterization of SGN-70, a humanized antibody directed against CD70. Clin Cancer Res. 2008;14(23):7763–72.

    CAS  PubMed  Google Scholar 

  43. 43.

    Rejin Kebudi SBB, Gorgun O, Agaoglu FY, Zulfikar B, Ayan I, Iribas A, et al. Risk adapted treatment in childhood Hodgkin’s lymphoma: outcome and changing epidemiologic features in 25 years. Blood. 2016;128(22).

  44. 44.

    Firtina S, Ng YY, Ng OH, Nepesov S, Yesilbas O, Kilercik M, et al. A novel pathogenic frameshift variant of CD3E gene in two T-B+ NK+ SCID patients from Turkey. Immunogenetics. 2017;69(10):653–9.

    CAS  PubMed  Google Scholar 

  45. 45.

    Gylfe AE, Katainen R, Kondelin J, Tanskanen T, Cajuso T, Hänninen U, et al. Eleven candidate susceptibility genes for common familial colorectal cancer. PLoS Genet. 2013;9(10):e1003876.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Krupp DR, Barnard RA, Duffourd Y, Evans SA, Mulqueen RM, Bernier R, et al. Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet. 2017;101(3):369–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mortaz E, et al. Cancers related to immunodeficiencies: update and perspectives. Front Immunol. 2016;7:365.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Gangemi S, Allegra A, Musolino C. Lymphoproliferative disease and cancer among patients with common variable immunodeficiency. Leuk Res. 2015;39(4):389–96.

    CAS  PubMed  Google Scholar 

  49. 49.

    Jonkman-Berk BM, van den Berg JM, ten Berge IJM, Bredius RGM, Driessen GJ, Dalm VASH, et al. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015;156(2):154–62.

    CAS  PubMed  Google Scholar 

  50. 50.

    Filipovich AH, et al. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 1992;52(19 Suppl):5465s–7s.

    CAS  PubMed  Google Scholar 

  51. 51.

    Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018;141(3):1028–35.

    PubMed  Google Scholar 

  52. 52.

    Kebudi R, Kiykim A, Sahin MK. Primary immunodeficiency and cancer in children; a review of the literature. Curr Pediatr Rev. 2019;15(4):245–50.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol. 2005;17(3):275–81.

    CAS  PubMed  Google Scholar 

  54. 54.

    Massini G, Siemer D, Hohaus S. EBV in Hodgkin lymphoma. Mediterr J Hematol Infect Dis. 2009;1(2):e2009013.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Vockerodt M, Cader FZ, Shannon-Lowe C, Murray P. Epstein-Barr virus and the origin of Hodgkin lymphoma. Chin J Cancer. 2014;33(12):591–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013;11:119.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Bertrand P, Maingonnat C, Penther D, Guney S, Ruminy P, Picquenot JM, et al. The costimulatory molecule CD70 is regulated by distinct molecular mechanisms and is associated with overall survival in diffuse large B-cell lymphoma. Genes Chromosom Cancer. 2013;52(8):764–74.

    CAS  PubMed  Google Scholar 

  58. 58.

    Giefing M, Arnemann J, Martin-Subero JI, Nieländer I, Bug S, Hartmann S, et al. Identification of candidate tumour suppressor gene loci for Hodgkin and Reed-Sternberg cells by characterisation of homozygous deletions in classical Hodgkin lymphoma cell lines. Br J Haematol. 2008;142(6):916–24.

    CAS  PubMed  Google Scholar 

  59. 59.

    Scholtysik R, Nagel I, Kreuz M, Vater I, Giefing M, Schwaenen C, et al. Recurrent deletions of the TNFSF7 and TNFSF9 genes in 19p13.3 in diffuse large B-cell and Burkitt lymphomas. Int J Cancer. 2012;131(5):E830–5.

    CAS  PubMed  Google Scholar 

  60. 60.

    Grulich AE, Vajdic CM, Cozen W. Altered immunity as a risk factor for non-Hodgkin lymphoma. Cancer Epidemiol Biomark Prev. 2007;16(3):405–8.

    CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by Istanbul University Research Fund with the project number: TOA 20499 and by Bilgi University Research Fund: 2018.01.006. The authors thank Prof Emin Darendeliler, Dr. Ayca Iribas, Istanbul University, Oncology Institute, Department of Radiation Oncology; Assoc. Prof Muge Gokce, Bahcelievler Memorial Hospital and The Stem Cell Transplantation Unit of the Medicalpark, Bahcelievler Hospital for the support in the treatment of the patients; and Emine Hafize Erdeniz from Erzurum Education and Research Hospital for providing patient information.

Author information

Affiliations

Authors

Contributions

M. Sayitoglu and R. Kebudi supervised the study. All authors contributed to the data collection. K. Khodzhaev and Y. Erbilgin directed the data analysis and family analysis. Y. Y. Ng, D. Altındirek, and O. H. Ng performed and analyzed the KREC study and provided molecular biology expertise. R. Kebudi and S. B. Bay provided clinical oncology expertise. A. Kaya and A. Kıykım provided clinical immunology expertise. F Çipe Erol and B Adaklı Aksoy provided allogeneic transplantation expertise, patient material, and clinical data for the study. F. Sen Zengin provided the patient material and data in Erzurum. Data analyses of molecular findings were performed by K. Khodzhaev, S. Firtina, and Y. Erbilgin. Data interpretation was carried out by R. Kebudi, M. Sayitoglu, K. Khodzhaev, S. B. Bay, and A. Kiykim. All authors contributed to manuscript preparation. M. Sayitoglu and R. Kebudi reviewed the manuscript. All authors made the final approval of the manuscript.

Corresponding author

Correspondence to Rejin Kebudi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 14 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khodzhaev, K., Bay, S.B., Kebudi, R. et al. Lymphoma Predisposing Gene in an Extended Family: CD70 Signaling Defect. J Clin Immunol 40, 883–892 (2020). https://doi.org/10.1007/s10875-020-00816-4

Download citation

Keywords

  • CD70
  • immune deficiency
  • lymphoma
  • EBV
  • malignancies