Treosulfan-Based Conditioning Regimen in Haematopoietic Stem Cell Transplantation with TCRαβ/CD19 Depletion in Nijmegen Breakage Syndrome.


Nijmegen breakage syndrome (NBS) is a DNA repair disorder characterized by combined immunodeficiency and a high predisposition to malignancies. HSCT appears to cure immunodeficiency, but remains challenging due to limited experience in long-term risks of transplant-associated toxicity and malignancies. Twenty NBS patients received 22 allogeneic HSCTs with TCRαβ/CD19+ graft depletion with fludarabine 150 mg/m2, cyclophosphamide 20–40 mg/kg and thymoglobulin 5 mg/kg based conditioning regimens (CRs). Twelve patients additionally received low-dose busulfan 4 mg/kg (Bu group) and 10 patients (including 2 recipients of a second HSCT) treosulfan (Treo group) 30 g/m2. Overall and event-free survival were 0.75 vs 1 (p = 0.16) and 0.47 vs 0.89 (p = 0.1) in the Bu and Treo groups, respectively. In the Bu group, four patients developed graft rejection, and three died: two died of de novo and relapsed lymphomas and one died of adenoviral hepatitis. The four living patients exhibited split chimerism with predominantly recipient myeloid cells and predominantly donor T and B lymphocytes. In Treo group, one patient developed rhabdomyosarcoma. There was no difference in the incidence of GVHD, viral reactivation, or early toxicity between either group. Low-dose Bu-containing CR in NBS leads to increased graft failure and low donor myeloid chimerism. Treo-CR followed by TCRαβ/CD19-depleted HSCT demonstrates a low level of early transplant-associated toxicity and enhanced graft function with stable donor chimerism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7(1):13.

    Article  Google Scholar 

  2. 2.

    Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front Pediatr. 2019;7:295.

    Article  Google Scholar 

  3. 3.

    Slack J, Albert MH, Balashov D, Belohradsky BH, Bertaina A, Bleesing J, et al. Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. Journal of Allergy and Clinical Immunology. 2018;141(1):322–328.e10.

    CAS  Article  Google Scholar 

  4. 4.

    Albert MH, Gennery AR, Greil J, Cale CM, Kalwak K, Kondratenko I, et al. Successful SCT for Nijmegen breakage syndrome. Bone Marrow Transplant. 2010;45(4):622–6.

    CAS  Article  Google Scholar 

  5. 5.

    Wolska-Kuśnierz B, Gregorek H, Chrzanowska K, Piątosa B, Pietrucha B, on behalf of the Inborn Errors Working Party of the Society for European Blood and Marrow Transplantation and the European Society for Immune Deficiencies, et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options – a retrospective analysis. J Clin Immunol. 2015 Aug;35(6):538–49.

    Article  Google Scholar 

  6. 6.

    Deripapa E, Balashov D, Rodina Y, Laberko A, Myakova N, Davydova NV, et al. Prospective study of a cohort of Russian Nijmegen breakage syndrome patients demonstrating predictive value of low kappa-deleting recombination excision circle (KREC) numbers and beneficial effect of hematopoietic stem cell transplantation (HSCT). Frontiers in Immunology [Internet]. 2017 [cited 2017 Sep 24];8. Available from:

  7. 7.

    Peffault de Latour R, Porcher R, Dalle J-H, Aljurf M, Korthof ET, Svahn J, et al. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia: the European Group for Blood and Marrow Transplantation experience. Blood. 2013;122(26):4279–86.

    CAS  Article  Google Scholar 

  8. 8.

    Slatter MA, Rao K, Abd Hamid IJ, Nademi Z, Chiesa R, Elfeky R, et al. Treosulfan and fludarabine conditioning for hematopoietic stem cell transplantation in children with primary immunodeficiency: UK experience. Biology of Blood and Marrow Transplantation. 2018;24(3):529–36.

    CAS  Article  Google Scholar 

  9. 9.

    Kröger N, Shimoni A, Zabelina T, Schieder H, Panse J, Ayuk F, et al. Reduced-toxicity conditioning with treosulfan, fludarabine and ATG as preparative regimen for allogeneic stem cell transplantation (alloSCT) in elderly patients with secondary acute myeloid leukemia (sAML) or myelodysplastic syndrome (MDS). Bone Marrow Transplant. 2006 Feb;37(4):339–44.

    Article  Google Scholar 

  10. 10.

    Casper J, Knauf W, Kiefer T, Wolff D, Steiner B, Hammer U, et al. Treosulfan and fludarabine: a new toxicity-reduced conditioning regimen for allogeneic hematopoietic stem cell transplantation. Blood. 2004 Jan 15;103(2):725–31.

    CAS  Article  Google Scholar 

  11. 11.

    Ebens CL, MacMillan ML, Wagner JE. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations. Expert Rev Hematol. 2017;10(1):81–97.

    CAS  Article  Google Scholar 

  12. 12.

    Shah RM, Elfeky R, Nademi Z, Qasim W, Amrolia P, Chiesa R, et al. T-cell receptor αβ + and CD19 + cell–depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. Journal of Allergy and Clinical Immunology [Internet]. 2017 Aug [cited 2017 Dec 17]; Available from:

  13. 13.

    Laberko A, Sultanova E, Gutovskaya E, Shipitsina I, Shelikhova L, Kurnikova E, et al. Mismatched related versus matched unrelated donors in TCRαβ/CD19-depleted HSCT for primary immunodeficiencies. Blood. 2019;blood.2019001757.

  14. 14.

    Balashov D, Shcherbina A, Maschan M, Trakhtman P, Skvortsova Y, Shelikhova L, et al. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRαβ and CD19 depletion in children with primary immunodeficiency syndromes. Biology of Blood and Marrow Transplantation. 2015;21(11):1955–62.

    Article  Google Scholar 

  15. 15.

    Stepensky P, Shapira MY, Balashov D, Trakhtman P, Skorobogatova E, Rheingold L, et al. Bone marrow transplantation for Fanconi Anemia using fludarabine-based conditioning. Biology of Blood and Marrow Transplantation. 2011;17(9):1282–8.

    CAS  Article  Google Scholar 

  16. 16.

    Wolska-Kuśnierz B, Gennery AR. Hematopoietic stem cell transplantation for DNA double strand breakage repair disorders. Front Pediatr. 2020 Jan 15;7:557.

    Article  Google Scholar 

  17. 17.

    Chao M, Ebell W, Bader P, Beier R, Burkhardt B, Feuchtinger T, et al. Consensus of German transplant centers on hematopoietic stem cell transplantation in Fanconi Anemia. Klin Padiatr. 2015 May 18;227(03):157–65.

    CAS  Article  Google Scholar 

  18. 18.

    Romański M, Wachowiak J, Główka FK. Treosulfan pharmacokinetics and its variability in pediatric and adult patients undergoing conditioning prior to hematopoietic stem cell transplantation: current state of the art, in-depth analysis, and perspectives. Clin Pharmacokinet. 2018 Oct;57(10):1255–65.

    Article  Google Scholar 

  19. 19.

    Haddad E, Leroy S, Buckley RH. B-cell reconstitution for SCID: should a conditioning regimen be used in SCID treatment? J Allergy Clin Immunol. 2013 Apr;131(4):994–1000.

    CAS  Article  Google Scholar 

  20. 20.

    Rao K, Adams S, Qasim W, Allwood Z, Worth A, Silva J, et al. Effect of stem cell source on long-term chimerism and event-free survival in children with primary immunodeficiency disorders after fludarabine and melphalan conditioning regimen. J Allergy Clin Immunol. 2016 Oct;138(4):1152–60.

    CAS  Article  Google Scholar 

  21. 21.

    Cavazzana-Calvo M, Carlier F, Le Deist F, Morillon E, Taupin P, Gautier D, et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood. 2007 May 15;109(10):4575–81.

    CAS  Article  Google Scholar 

  22. 22.

    Mazzolari E, Forino C, Guerci S, Imberti L, Lanfranchi A, Porta F, et al. Long-term immune reconstitution and clinical outcome after stem cell transplantation for severe T-cell immunodeficiency. J Allergy Clin Immunol. 2007 Oct;120(4):892–9.

    CAS  Article  Google Scholar 

  23. 23.

    van der Stoep MYEC, Bertaina A, ten Brink MH, Bredius RG, Smiers FJ, Wanders DCM, et al. High interpatient variability of treosulfan exposure is associated with early toxicity in paediatric HSCT: a prospective multicentre study. Br J Haematol. 2017 Dec;179(5):772–80.

    Article  Google Scholar 

  24. 24.

    on behalf of the EBMT Inborn Errors and Paediatric Diseases Working Parties, Slatter MA, Boztug H, Pötschger U, Sykora K-W, Lankester A, et al. Treosulfan-based conditioning regimens for allogeneic haematopoietic stem cell transplantation in children with non-malignant diseases. Bone Marrow Transplant. 2015 Dec;50(12):1536–41.

  25. 25.

    Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins A-M, et al. Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood. 2016 Jul 21;128(3):440–8.

    CAS  Article  Google Scholar 

  26. 26.

    Güngör T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet. 2014 Feb;383(9915):436–48.

    Article  Google Scholar 

  27. 27.

    Mehta PA, Davies SM, Leemhuis T, Myers K, Kernan NA, Prockop SE, et al. Radiation-free, alternative-donor HCT for Fanconi anemia patients: results from a prospective multi-institutional study. Blood. 2017 Apr 20;129(16):2308–15.

    CAS  Article  Google Scholar 

  28. 28.

    Bartelink IH, Bredius RGM, Ververs TT, Raphael MF, van Kesteren C, Bierings M, et al. Once-daily intravenous busulfan with therapeutic drug monitoring compared to conventional oral busulfan improves survival and engraftment in children undergoing allogeneic stem cell transplantation. Biology of Blood and Marrow Transplantation. 2008 Jan;14(1):88–98.

    CAS  Article  Google Scholar 

  29. 29.

    Schuetz C, Neven B, Dvorak CC, Leroy S, Ege MJ, Pannicke U, et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood. 2014 Jan 9;123(2):281–9.

    CAS  Article  Google Scholar 

  30. 30.

    Shaw P, Shizuru J, Hoenig M, Veys P. IEWP-EBMT. Conditioning Perspectives for Primary Immunodeficiency Stem Cell Transplants Front Pediatr. 2019 Nov 6;7:434.

    PubMed  Google Scholar 

Download references


The authors thank the Immunology and HSCT Departments staff and other hospital staff for continued support of patient care.

Author information




AL collected the data, performed the analysis and wrote the manuscript. ES and AK contributed to the data collection and analysis. EG, SR and ED contributed to patient care. VB performed chimerism assays. JS elaborated the HSCT research database. AS led pre-HSCT patient care. AM and MM led the HSCT programme. DB conducted the study. All co-authors contributed to manuscript preparation.

Corresponding author

Correspondence to Alexandra Laberko.

Ethics declarations

Conflict of Interest

MM: lecturer’s fee from Miltenyi Biotec. The remaining authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laberko, A., Sultanova, E., Gutovskaya, E. et al. Treosulfan-Based Conditioning Regimen in Haematopoietic Stem Cell Transplantation with TCRαβ/CD19 Depletion in Nijmegen Breakage Syndrome.. J Clin Immunol 40, 861–871 (2020).

Download citation


  • Nijmegen breakage syndrome
  • Haematopoietic stem cell transplantation
  • TCRαβ/CD19 depletion
  • Treosulfan
  • DNA repair disorder