Advertisement

Journal of Clinical Immunology

, Volume 38, Issue 3, pp 273–277 | Cite as

Novel Mutation in CECR1 Leads to Deficiency of ADA2 with Associated Neutropenia

  • Funda Erol Cipe
  • Cigdem Aydogmus
  • Nina K. Serwas
  • Gonca Keskindemirci
  • Kaan Boztuğ
Original Article

Abstract

Purpose

Adenosine deaminase 2 (ADA2) have been reported to cause vasculitic diseases and immunodeficiency recently. Patients present with stroke episodes and rashes mimicking polyarteritis nodosa (PAN). We report a patient who has been followed up with severe neutropenia and found an unexpectedly revealed novel mutation in CECR1 affecting ADA2.

Methods

We reviewed medical records and clinical history of the patient. No mutations in other known neutropenia genes such as ELA, G6PC3, HAX1, AP3B1, LAMTOR2, VPS13B, VPS45, GFI1, JAGN1, or WAS could be detected. Sanger sequencing was used to confirm the genetic variants in the patient and relatives.

Results

Genetic analysis by exome sequencing revealed a novel mutation in the gene CECR1 (c.G962A; p.G321E) which segregated perfectly in the relatives.

Conclusion

This is the first DADA2 patient presenting with severe neutropenia. We suggest that in patients with unexplained cytopenias combined with immunodeficiency, fevers of unknown origin and high inflammation markers, DADA2 should be considered.

Keywords

ADA2 deficiency of adenosine deminase 2 neutropenia 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370(10):921–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911–20.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hashem H, Egler R, Dalal J. Refractory pure red cell aplasia manifesting as deficiency of adenosine deaminase 2. J Pediatr Hematol Oncol. 2017;39(5):e293–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Schepp J, Bulashevska A, Mannhardt-Laakmann W, Cao H, Yang F, Seidl M, et al. Deficiency of adenosine deaminase 2 causes antibody deficiency. J Clin Immunol. 2016;36(3):179–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Grenda DS, Murakami M, Ghatak J, Xia J, Boxer LA, Dale D, et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood. 2007;110(13):4179–87.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Germeshausen M, Deerberg S, Peter Y, Reimer C, Kratz CP, Ballmaier M. The spectrum of ELANE mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat. 2013;34(6):905–14.Google Scholar
  7. 7.
    Boztug K, Appaswamy G, Ashikov A, Schäffer AA, Salzer U, Diestelhorst J. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med. 2009;360(1):32–43.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia [Kostmann disease]. Nat Genet. 2007;39(1):86–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell. 1999;3(1):11–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schäffer AA. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med. 2007;13(1):38–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Kolehmainen J, Black GC, Saarinen A, Chandler K, Clayton-Smith J, Träskelin AL, et al. Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet. 2003;72(6):1359–69.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stepensky P, Saada A, Cowan M, Tabib A, Fischer U, Berkun Y, et al. The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood. 2013;121(25):5078–87.CrossRefPubMedGoogle Scholar
  13. 13.
    Vilboux T, Lev A, Malicdan MC, Simon AJ, Järvinen P, Racek T, et al. A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med. 2013;369(1):54–65.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34(3):308–12.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Boztug K, Järvinen PM, Salzer E, Racek T, Mönch S, Garncarz W, et al. JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nat Genet. 2014;46(9):1021–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van Den Oord JJ, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 2001;27(3):313–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010.Google Scholar
  18. 18.
    Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Exome aggregation, analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fellmann F, Angelini F, Wassenberg J, Perreau M, Arenas Ramirez N, Simon G, et al. IL-17 receptor A and adenosine deaminase 2 deficiency in siblings with recurrent infections and chronic inflammation. J Allergy Clin Immunol. 2016;137(4):1189–1196.e2.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaljas Y, Liu C, Skaldin M, Wu C, Zhou Q, Lu Y, et al. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells. Cell Mol Life Sci. 2017;74(3):555–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Zavialov AV, Lauvau G. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol. 2010;88(2):279–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Belot A, Wassmer E, Twilt M, Lega JC, Zeef LA, Oojageer A, et al. Mutations in CECR1 associated with a neutrophil signature in peripheral blood. Pediatr Rheumatol Online J. 2014;12:44.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caorsi R, Penco F, Schena F, Gattorno M. Monogenic polyarteritis: the lesson of ADA2 deficiency. Pediatr Rheumatol Online J. 2016;14(1):51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van Montfrans J, Zavialov A, Zhou Q. Mutant ADA2 in vasculopathies. N Engl J Med. 2014;371(5):478.CrossRefPubMedGoogle Scholar
  26. 26.
    Van Eyck L Jr, Hershfield MS, Pombal D, Kelly SJ, Ganson NJ, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135(1):283–7.e5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kastner DL, Zhou Q, Aksentijevich I. Mutant ADA2 in vasculopathies. N Engl J Med. 2014;371(5):480–1.PubMedGoogle Scholar
  28. 28.
    Nanthapisal S, Murphy C, Omoyinmi E, Hong Y, Standing A, Berg S, et al. Deficiency of adenosine deaminase type 2: a description of phenotype and genotype in fifteen cases. Arthritis Rheumatol. 2016;68(9):2314–22.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Funda Erol Cipe
    • 1
  • Cigdem Aydogmus
    • 1
  • Nina K. Serwas
    • 2
    • 3
    • 4
  • Gonca Keskindemirci
    • 1
  • Kaan Boztuğ
    • 2
    • 3
    • 4
  1. 1.Department of Pediatric Allergy-ImmunologyKanuni Sultan Suleyman Research and Training HospitalIstanbulTurkey
  2. 2.CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
  3. 3.Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
  4. 4.Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria

Personalised recommendations