Journal of Clinical Immunology

, Volume 35, Issue 5, pp 463–478 | Cite as

Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy

  • Kai Kisand
  • Pärt Peterson
CME Review


Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autosomal recessive disease caused by mutations in the autoimmune regulator (AIRE) gene. This review focuses on the clinical and immunological features of APECED, summarizes the current knowledge on the function of AIRE and discusses the importance of autoantibodies in disease diagnosis and prognosis. Additionally, we review the outcome of recent immunomodulatory treatments in APECED patients.


APECED APS1 AIRE chronic mucocutaneous candidiasis type I interferons IL-17 IL-22 autoantibodies 



Addison’s disease


Autoimmune hepatitis


Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy


Autoimmune polyendocrine syndrome, type 1


Chronic mucocutaneous candidiasis


Enteroendocrine cells


Enzyme-linked immunosorbent assay


Gastrointestinal dysfunction








Interstitial lung disease


Luciferase based immunoprecipitation system


Thymic medullary epithelial cell


Type 1 diabetes


Tubulo-interstitial nephritis


Tissue-specific antigens



This work was supported by Estonian Research Council grant IUT2-2, Center of Excellence of Translational Medicine of University of Tartu, European Regional Development Fund, and Archimedes Foundation.


  1. 1.
    Ahonen P, Myllarniemi S, Sipila I, Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med. 1990;322:1829–36.PubMedGoogle Scholar
  2. 2.
    Perheentupa J. APS-I/APECED: the clinical disease and therapy. Endocrinol Metab Clin N Am. 2002;31:295–320.Google Scholar
  3. 3.
    Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17:393–8.PubMedGoogle Scholar
  4. 4.
    Consortium F-GA. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997;17:399–403.Google Scholar
  5. 5.
    Zlotogora J, Shapiro MS. Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet. 1992;29:824–6.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Rosatelli MC, Meloni A, Meloni A, Devoto M, Cao A, Scott HS, et al. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum Genet. 1998;103:428–34.PubMedGoogle Scholar
  7. 7.
    Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2006;91:2843–50.PubMedGoogle Scholar
  8. 8.
    Podkrajsek KT, Bratanic N, Krzisnik C, Battelino T. Autoimmune regulator-1 messenger ribonucleic acid analysis in a novel intronic mutation and two additional novel AIRE gene mutations in a cohort of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. J Clin Endocrinol Metab. 2005;90:4930–5.PubMedGoogle Scholar
  9. 9.
    Myhre AG, Halonen M, Eskelin P, Ekwall O, Hedstrand H, Rorsman F, et al. Autoimmune polyendocrine syndrome type 1 (APS I) in Norway. Clin Endocrinol (Oxf). 2001;54:211–7.Google Scholar
  10. 10.
    Stolarski B, Pronicka E, Korniszewski L, Pollak A, Kostrzewa G, Rowinska E, et al. Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a Polish population: novel AIRE mutations and an estimate of disease prevalence. Clin Genet. 2006;70:348–54.PubMedGoogle Scholar
  11. 11.
    Husebye ES, Perheentupa J, Rautemaa R, Kampe O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Intern Med. 2009;265:514–29.PubMedGoogle Scholar
  12. 12.
    Peterson P, Peltonen L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun. 2005;25(Suppl):49–55.PubMedGoogle Scholar
  13. 13.
    Cetani F, Barbesino G, Borsari S, Pardi E, Cianferotti L, Pinchera A, et al. A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. J Clin Endocrinol Metab. 2001;86:4747–52.PubMedGoogle Scholar
  14. 14.
    Boe AS, Knappskog PM, Myhre AG, Sorheim JI, Husebye ES. Mutational analysis of the autoimmune regulator (AIRE) gene in sporadic autoimmune Addison’s disease can reveal patients with unidentified autoimmune polyendocrine syndrome type I. Eur J Endocrinol. 2002;146:519–22.PubMedGoogle Scholar
  15. 15.
    Cervato S, Morlin L, Albergoni MP, Masiero S, Greggio N, Meossi C, et al. AIRE gene mutations and autoantibodies to interferon omega in patients with chronic hypoparathyroidism without APECED. Clin Endocrinol (Oxf). 2010;73:630–6.Google Scholar
  16. 16.
    Meager A, Visvalingam K, Peterson P, Moll K, Murumagi A, Krohn K, et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006;3:e289.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Meloni A, Furcas M, Cetani F, Marcocci C, Falorni A, Perniola R, et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2008;93:4389–97.PubMedGoogle Scholar
  18. 18.
    Toth B, Wolff AS, Halasz Z, Tar A, Szuts P, Ilyes I, et al. Novel sequence variation of AIRE and detection of interferon-omega antibodies in early infancy. Clin Endocrinol (Oxf). 2010;72:641–7.Google Scholar
  19. 19.
    Wolff AS, Erichsen MM, Meager A, Magitta NF, Myhre AG, Bollerslev J, et al. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab. 2007;92:595–603.PubMedGoogle Scholar
  20. 20.
    Zhang L, Barker JM, Babu S, Su M, Stenerson M, Cheng M, et al. A robust immunoassay for anti-interferon autoantibodies that is highly specific for patients with autoimmune polyglandular syndrome type 1. Clin Immunol. 2007;125:131–7.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Husebye ES, Anderson MS. Autoimmune polyendocrine syndromes: clues to type 1 diabetes pathogenesis. Immunity. 2011;32:479–87.Google Scholar
  22. 22.
    Wolff AS, Sarkadi AK, Marodi L, Karner J, Orlova E, Oftedal BE, et al. Anti-cytokine autoantibodies preceding onset of autoimmune polyendocrine syndrome type I features in early childhood. J Clin Immunol. 2013;33:1341–8.PubMedGoogle Scholar
  23. 23.
    Meloni A, Willcox N, Meager A, Atzeni M, Wolff AS, Husebye ES, et al. Autoimmune polyendocrine syndrome type 1: an extensive longitudinal study in Sardinian patients. J Clin Endocrinol Metab. 2012;97:1114–24.PubMedGoogle Scholar
  24. 24.
    Meager A, Vincent A, Newsom-Davis J, Willcox N. Spontaneous neutralising antibodies to interferon--alpha and interleukin-12 in thymoma-associated autoimmune disease. Lancet. 1997;350:1596–7.PubMedGoogle Scholar
  25. 25.
    Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case–control study. Lancet Neurol. 2013;12:1159–69.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Meager A, Wadhwa M, Dilger P, Bird C, Thorpe R, Newsom-Davis J, et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin Exp Immunol. 2003;132:128–36.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Kluger N, Kataja J, Aho H, Ronn AM, Krohn K, Ranki A. Kidney involvement in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy in a Finnish cohort. Nephrol Dial Transplant. 2014;29:1750–7.PubMedGoogle Scholar
  28. 28.
    Oftedal BE, Wolff AS, Bratland E, Kampe O, Perheentupa J, Myhre AG, et al. Radioimmunoassay for autoantibodies against interferon omega; its use in the diagnosis of autoimmune polyendocrine syndrome type I. Clin Immunol. 2008;129:163–9.PubMedGoogle Scholar
  29. 29.
    Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–7.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Karner J, Meager A, Laan M, Maslovskaja J, Pihlap M, Remm A, et al. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin Exp Immunol. 2013;171:263–72.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Burbelo PD, Browne SK, Sampaio EP, Giaccone G, Zaman R, Kristosturyan E, et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood. 2010;116:4848–58.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kisand K, Link M, Wolff AS, Meager A, Tserel L, Org T, et al. Interferon autoantibodies associated with AIRE deficiency decrease the expression of IFN-stimulated genes. Blood. 2008;112:2657–66.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Breivik L, Oftedal BE, Boe Wolff AS, Bratland E, Orlova EM, Husebye ES. A novel cell-based assay for measuring neutralizing autoantibodies against type I interferons in patients with autoimmune polyendocrine syndrome type 1. Clin Immunol. 2014;153:220–7.PubMedGoogle Scholar
  34. 34.
    Arstila TP, Jarva H. Human APECED; a sick thymus syndrome? Front Immunol. 2013;4:313.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Heino M, Peterson P, Kudoh J, Nagamine K, Lagerstedt A, Ovod V, et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun. 1999;257:821–5.PubMedGoogle Scholar
  36. 36.
    Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 2008;321:843–7.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Poliani PL, Kisand K, Marrella V, Ravanini M, Notarangelo LD, Villa A, et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am J Pathol. 2010;176:1104–12.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Bjorses P, Halonen M, Palvimo JJ, Kolmer M, Aaltonen J, Ellonen P, et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am J Hum Genet. 2000;66:378–92.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006–16.PubMedGoogle Scholar
  40. 40.
    Peterson P, Org T, Rebane A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol. 2008;8:948–57.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Ferguson BJ, Alexander C, Rossi SW, Liiv I, Rebane A, Worth CL, et al. AIRE’s CARD revealed, a new structure for central tolerance provokes transcriptional plasticity. J Biol Chem. 2008;283:1723–31.PubMedGoogle Scholar
  42. 42.
    Kyewski B, Derbinski J. Self-representation in the thymus: an extended view. Nat Rev Immunol. 2004;4:688–98.PubMedGoogle Scholar
  43. 43.
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol. 2003;4:350–4.PubMedGoogle Scholar
  44. 44.
    Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–401.PubMedGoogle Scholar
  45. 45.
    Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science. 2013;339:1219–24.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science. 2015;348:589–94.PubMedGoogle Scholar
  47. 47.
    Gaetani M, Matafora V, Saare M, Spiliotopoulos D, Mollica L, Quilici G, et al. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome. Nucleic Acids Res. 2012;40:11756–68.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Abramson J, Giraud M, Benoist C, Mathis D. Aire’s partners in the molecular control of immunological tolerance. Cell. 2010;140:123–35.PubMedGoogle Scholar
  49. 49.
    Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, Liiv I, et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 2008;9:370–6.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Koh AS, Kuo AJ, Park SY, Cheung P, Abramson J, Bua D, et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci U S A. 2008;105:15878–83.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Chignola F, Gaetani M, Rebane A, Org T, Mollica L, Zucchelli C, et al. The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation. Nucleic Acids Res. 2009;37:2951–61.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Pitkanen J, Rebane A, Rowell J, Murumagi A, Strobel P, Moll K, et al. Cooperative activation of transcription by autoimmune regulator AIRE and CBP. Biochem Biophys Res Commun. 2005;333:944–53.PubMedGoogle Scholar
  53. 53.
    Zumer K, Plemenitas A, Saksela K, Peterlin BM. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. Nucleic Acids Res. 2011;39:7908–19.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A. 2012;109:535–40.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Giraud M, Jmari N, Du L, Carallis F, Nieland TJ, Perez-Campo FM, et al. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proc Natl Acad Sci U S A. 2014;111:1491–6.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, Jacob A, et al. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nat Immunol. 2015;16:737–45.Google Scholar
  57. 57.
    Wang X, Laan M, Bichele R, Kisand K, Scott HS, Peterson P. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol. 2012;3:1–16.Google Scholar
  58. 58.
    Matsumoto M. Contrasting models for the roles of Aire in the differentiation program of epithelial cells in the thymic medulla. Eur J Immunol. 2011;41:12–7.PubMedGoogle Scholar
  59. 59.
    Matsumoto M, Nishikawa Y, Nishijima H, Morimoto J, Matsumoto M, Mouri Y. Which model better fits the role of aire in the establishment of self-tolerance: the transcription model or the maturation model? Front Immunol. 2013;4:210.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Laan M, Peterson P. The many faces of aire in central tolerance. Front Immunol. 2013;4:326.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Kisand K, Peterson P, Laan M. Lymphopenia-induced proliferation in aire-deficient mice helps to explain their autoimmunity and differences from human patients. Front Immunol. 2014;5:51.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Nishikawa Y, Nishijima H, Matsumoto M, Morimoto J, Hirota F, Takahashi S, et al. Temporal lineage tracing of Aire-expressing cells reveals a requirement for Aire in their maturation program. J Immunol. 2014;192:2585–92.PubMedGoogle Scholar
  63. 63.
    Podkrajsek KT, Milenkovic T, Odink RJ, der Grinten HL C-v, Bratanic N, Hovnik T, et al. Detection of a complete autoimmune regulator gene deletion and two additional novel mutations in a cohort of patients with atypical phenotypic variants of autoimmune polyglandular syndrome type 1. Eur J Endocrinol. 2008;159:633–9.PubMedGoogle Scholar
  64. 64.
    Boe Wolff AS, Oftedal B, Johansson S, Bruland O, Lovas K, Meager A, et al. AIRE variations in Addison’s disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I. Genes Immun. 2008;9:130–6.PubMedGoogle Scholar
  65. 65.
    Peterson P, Pitkanen J, Sillanpaa N, Krohn K. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a model disease to study molecular aspects of endocrine autoimmunity. Clin Exp Immunol. 2004;135:348–57.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Ilmarinen T, Eskelin P, Halonen M, Ruppell T, Kilpikari R, Torres GD, et al. Functional analysis of SAND mutations in AIRE supports dominant inheritance of the G228W mutation. Hum Mutat. 2005;26:322–31.PubMedGoogle Scholar
  67. 67.
    Su MA, Giang K, Zumer K, Jiang H, Oven I, Rinn JL, et al. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest. 2008;118:1712–26.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Halonen M, Eskelin P, Myhre AG, Perheentupa J, Husebye ES, Kampe O, et al. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab. 2002;87:2568–74.PubMedGoogle Scholar
  69. 69.
    Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41:1517–27.PubMedGoogle Scholar
  71. 71.
    Betterle C, Greggio NA, Volpato M. Clinical review 93: autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 1998;83:1049–55.PubMedGoogle Scholar
  72. 72.
    Collins SM, Dominguez M, Ilmarinen T, Costigan C, Irvine AD. Dermatological manifestations of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. Br J Dermatol. 2006;154:1088–93.PubMedGoogle Scholar
  73. 73.
    Rautemaa R, Hietanen J, Niissalo S, Pirinen S, Perheentupa J. Oral and oesophageal squamous cell carcinoma--a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I). Oral Oncol. 2007;43:607–13.PubMedGoogle Scholar
  74. 74.
    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203:2271–9.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Conti HR, Baker O, Freeman AF, Jang WS, Holland SM, Li RA, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011;4:448–55.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol. 2011;12:383–90.PubMedGoogle Scholar
  77. 77.
    Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C, et al. IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol. 2011;41:1894–901.PubMedGoogle Scholar
  78. 78.
    Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–48.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, et al. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol. 2008;128:2640–5.PubMedGoogle Scholar
  80. 80.
    Ahlgren KM, Moretti S, Lundgren BA, Karlsson I, Ahlin E, Norling A, et al. Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur J Immunol. 2011;41:235–45.PubMedGoogle Scholar
  81. 81.
    Ng WF, von Delwig A, Carmichael AJ, Arkwright PD, Abinun M, Cant AJ, et al. Impaired T(H)17 responses in patients with chronic mucocutaneous candidiasis with and without autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Allergy Clin Immunol. 2010;126:1006–15.PubMedGoogle Scholar
  82. 82.
    Laakso SM, Kekalainen E, Heikkila N, Mannerstrom H, Kisand K, Peterson P, et al. In vivo analysis of helper T cell responses in patients with autoimmune polyendocrinopathy - candidiasis - ectodermal dystrophy provides evidence in support of an IL-22 defect. Autoimmunity. 2014;47:556–62.PubMedGoogle Scholar
  83. 83.
    Sarkadi AK, Tasko S, Csorba G, Toth B, Erdos M, Marodi L. Autoantibodies to IL-17A may be correlated with the severity of mucocutaneous candidiasis in APECED patients. J Clin Immunol. 2014;34:181–93.PubMedGoogle Scholar
  84. 84.
    Mazza C, Buzi F, Ortolani F, Vitali A, Notarangelo LD, Weber G, et al. Clinical heterogeneity and diagnostic delay of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. Clin Immunol. 2011;139:6–11.PubMedGoogle Scholar
  85. 85.
    Betterle C, Zanchetta R. Update on autoimmune polyendocrine syndromes (APS). Acta Biomed. 2003;74:9–33.PubMedGoogle Scholar
  86. 86.
    Orlova EM, Bukina AM, Kuznetsova ES, Kareva MA, Zakharova EU, Peterkova VA, et al. Autoimmune polyglandular syndrome type 1 in Russian patients: clinical variants and autoimmune regulator mutations. Horm Res Paediatr. 2010;73:449–57.PubMedGoogle Scholar
  87. 87.
    Proust-Lemoine E, Saugier-Veber P, Lefranc D, Dubucquoi S, Ryndak A, Buob D, et al. Autoimmune polyendocrine syndrome type 1 in north-western France: AIRE gene mutation specificities and severe forms needing immunosuppressive therapies. Horm Res Paediatr. 2010;74:275–84.PubMedGoogle Scholar
  88. 88.
    Gylling M, Kaariainen E, Vaisanen R, Kerosuo L, Solin ML, Halme L, et al. The hypoparathyroidism of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protective effect of male sex. J Clin Endocrinol Metab. 2003;88:4602–8.PubMedGoogle Scholar
  89. 89.
    Dawoodji A, Chen JL, Shepherd D, Dalin F, Tarlton A, Alimohammadi M, et al. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison’s disease patients. J Immunol. 2014;193:2118–26.PubMedGoogle Scholar
  90. 90.
    Bratland E, Skinningsrud B, Undlien DE, Mozes E, Husebye ES. T cell responses to steroid cytochrome P450 21-hydroxylase in patients with autoimmune primary adrenal insufficiency. J Clin Endocrinol Metab. 2009;94:5117–24.PubMedGoogle Scholar
  91. 91.
    Rottembourg D, Deal C, Lambert M, Mallone R, Carel JC, Lacroix A, et al. 21-Hydroxylase epitopes are targeted by CD8 T cells in autoimmune Addison’s disease. J Autoimmun. 2010;35:309–15.PubMedGoogle Scholar
  92. 92.
    Rosenthal FD, Davies MK, Burden AC. Malignant disease presenting as Addison’s disease. Br Med J. 1978;1:1591–2.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Bratland E, Husebye ES. Cellular immunity and immunopathology in autoimmune Addison’s disease. Mol Cell Endocrinol. 2011;336:180–90.PubMedGoogle Scholar
  94. 94.
    Soderbergh A, Myhre AG, Ekwall O, Gebre-Medhin G, Hedstrand H, Landgren E, et al. Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2004;89:557–62.PubMedGoogle Scholar
  95. 95.
    Uibo R, Aavik E, Peterson P, Perheentupa J, Aranko S, Pelkonen R, et al. Autoantibodies to cytochrome P450 enzymes P450scc, P450c17, and P450c21 in autoimmune polyglandular disease types I and II and in isolated Addison’s disease. J Clin Endocrinol Metab. 1994;78:323–8.PubMedGoogle Scholar
  96. 96.
    Furmaniak J, Kominami S, Asawa T, Wedlock N, Colls J, Smith BR. Autoimmune Addison’s disease--evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J Clin Endocrinol Metab. 1994;79:1517–21.PubMedGoogle Scholar
  97. 97.
    Krohn K, Uibo R, Aavik E, Peterson P, Savilahti K. Identification by molecular cloning of an autoantigen associated with Addison’s disease as steroid 17 alpha-hydroxylase. Lancet. 1992;339:770–3.PubMedGoogle Scholar
  98. 98.
    Winqvist O, Karlsson FA, Kampe O. 21-Hydroxylase, a major autoantigen in idiopathic Addison’s disease. Lancet. 1992;339:1559–62.PubMedGoogle Scholar
  99. 99.
    Winqvist O, Gustafsson J, Rorsman F, Karlsson FA, Kampe O. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison’s disease. J Clin Invest. 1993;92:2377–85.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Smith D, Stringer MD, Wyatt J, O’Meara M, Davison S, Cheetham TD, et al. Orthotopic liver transplantation for acute liver failure secondary to autoimmune hepatitis in a child with autoimmune polyglandular syndrome type 1. Pediatr Transplant. 2002;6:166–70.PubMedGoogle Scholar
  101. 101.
    Abinun M, Hodges S, Cheetham T, Ognjanovic M, Hopper N, Burt A, et al. Immunomodulatory therapy for severe autoimmune polyendocrinopathy type-1 (APS-1). J Clin Immunol. 2014;34 Suppl 2:S202.Google Scholar
  102. 102.
    Michele TM, Fleckenstein J, Sgrignoli AR, Thuluvath PJ. Chronic active hepatitis in the type I polyglandular autoimmune syndrome. Postgrad Med J. 1994;70:128–31.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Goldstein NS, Rosenthal P, Sinatra F, Dehner LP. Liver disease in polyglandular autoimmune disease type one: clinicopathologic study of three patients and review of the literature. Pediatr Pathol Lab Med. 1996;16:625–36.PubMedGoogle Scholar
  104. 104.
    Obermayer-Straub P, Perheentupa J, Braun S, Kayser A, Barut A, Loges S, et al. Hepatic autoantigens in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Gastroenterology. 2001;121:668–77.PubMedGoogle Scholar
  105. 105.
    Kluger N, Krohn K, Ranki A. Absence of some common organ-specific and non-organ-specific autoimmunity in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. Endocr Connect. 2013;2:61–8.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Gebre-Medhin G, Husebye ES, Gustafsson J, Winqvist O, Goksoyr A, Rorsman F, et al. Cytochrome P450IA2 and aromatic L-amino acid decarboxylase are hepatic autoantigens in autoimmune polyendocrine syndrome type I. FEBS Lett. 1997;412:439–45.PubMedGoogle Scholar
  107. 107.
    Clemente MG, Obermayer-Straub P, Meloni A, Strassburg CP, Arangino V, Tukey RH, et al. Cytochrome P450 1A2 is a hepatic autoantigen in autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 1997;82:1353–61.PubMedGoogle Scholar
  108. 108.
    Clemente MG, Meloni A, Obermayer-Straub P, Frau F, Manns MP, De Virgiliis S. Two cytochromes P450 are major hepatocellular autoantigens in autoimmune polyglandular syndrome type 1. Gastroenterology. 1998;114:324–8.PubMedGoogle Scholar
  109. 109.
    Kluger N, Jokinen M, Krohn K, Ranki A. Gastrointestinal manifestations in APECED syndrome. J Clin Gastroenterol. 2013;47:112–20.PubMedGoogle Scholar
  110. 110.
    Ward L, Paquette J, Seidman E, Huot C, Alvarez F, Crock P, et al. Severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy in an adolescent girl with a novel AIRE mutation: response to immunosuppressive therapy. J Clin Endocrinol Metab. 1999;84:844–52.PubMedGoogle Scholar
  111. 111.
    Posovszky C, Lahr G, von Schnurbein J, Buderus S, Findeisen A, Schroder C, et al. Loss of enteroendocrine cells in autoimmune-polyendocrine-candidiasis-ectodermal-dystrophy (APECED) syndrome with gastrointestinal dysfunction. J Clin Endocrinol Metab. 2012;97:E292–300.PubMedGoogle Scholar
  112. 112.
    Scarpa R, Alaggio R, Norberto L, Furmaniak J, Chen S, Smith BR, et al. Tryptophan hydroxylase autoantibodies as markers of a distinct autoimmune gastrointestinal component of autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 2013;98:704–12.PubMedGoogle Scholar
  113. 113.
    Gianani R, Eisenbarth GS. Autoimmunity to gastrointestinal endocrine cells in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 2003;88:1442–4.PubMedGoogle Scholar
  114. 114.
    Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011;92:219–31.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Skoldberg F, Portela-Gomes GM, Grimelius L, Nilsson G, Perheentupa J, Betterle C, et al. Histidine decarboxylase, a pyridoxal phosphate-dependent enzyme, is an autoantigen of gastric enterochromaffin-like cells. J Clin Endocrinol Metab. 2003;88:1445–52.PubMedGoogle Scholar
  116. 116.
    Ekwall O, Hedstrand H, Grimelius L, Haavik J, Perheentupa J, Gustafsson J, et al. Identification of tryptophan hydroxylase as an intestinal autoantigen. Lancet. 1998;352:279–83.PubMedGoogle Scholar
  117. 117.
    Hogenauer C, Meyer RL, Netto GJ, Bell D, Little KH, Ferries L, et al. Malabsorption due to cholecystokinin deficiency in a patient with autoimmune polyglandular syndrome type I. N Engl J Med. 2001;344:270–4.PubMedGoogle Scholar
  118. 118.
    Dobes J, Neuwirth A, Dobesova M, Voboril M, Balounova J, Ballek O, et al. Gastrointestinal autoimmunity associated with loss of central tolerance to enteric alpha-defensins. Gastroenterology. 2015;149:139–50.Google Scholar
  119. 119.
    Hedstrand H, Ekwall O, Haavik J, Landgren E, Betterle C, Perheentupa J, et al. Identification of tyrosine hydroxylase as an autoantigen in autoimmune polyendocrine syndrome type I. Biochem Biophys Res Commun. 2000;267:456–61.PubMedGoogle Scholar
  120. 120.
    Hedstrand H, Ekwall O, Olsson MJ, Landgren E, Kemp EH, Weetman AP, et al. The transcription factors SOX9 and SOX10 are vitiligo autoantigens in autoimmune polyendocrine syndrome type I. J Biol Chem. 2001;276:35390–5.PubMedGoogle Scholar
  121. 121.
    Al-Owain M, Kaya N, Al-Zaidan H, Bin Hussain I, Al-Manea H, Al-Hindi H, et al. Renal failure associated with APECED and terminal 4q deletion: evidence of autoimmune nephropathy. Clin Dev Immunol. 2010;2010:586342.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Ulinski T, Perrin L, Morris M, Houang M, Cabrol S, Grapin C, et al. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome with renal failure: impact of posttransplant immunosuppression on disease activity. J Clin Endocrinol Metab. 2006;91:192–5.PubMedGoogle Scholar
  123. 123.
    Alimohammadi M, Dubois N, Skoldberg F, Hallgren A, Tardivel I, Hedstrand H, et al. Pulmonary autoimmunity as a feature of autoimmune polyendocrine syndrome type 1 and identification of KCNRG as a bronchial autoantigen. Proc Natl Acad Sci U S A. 2009;106:4396–401.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Popler J, Alimohammadi M, Kampe O, Dalin F, Dishop MK, Barker JM, et al. Autoimmune polyendocrine syndrome type 1: Utility of KCNRG autoantibodies as a marker of active pulmonary disease and successful treatment with rituximab. Pediatr Pulmonol. 2012;47:84–7.PubMedGoogle Scholar
  125. 125.
    Shum AK, Alimohammadi M, Tan CL, Cheng MH, Metzger TC, Law CS, et al. BPIFB1 is a lung-specific autoantigen associated with interstitial lung disease. Sci Transl Med. 2014;5:206ra139.Google Scholar
  126. 126.
    Su MA, Davini D, Cheng P, Giang K, Fan U, DeVoss JJ, et al. Defective autoimmune regulator-dependent central tolerance to myelin protein zero is linked to autoimmune peripheral neuropathy. J Immunol. 2012;188:4906–12.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Di Sabatino A, Carsetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet. 2011;378:86–97.PubMedGoogle Scholar
  128. 128.
    Husebye ES. Functional autoantibodies cause hypoparathyroidism. J Clin Endocrinol Metab. 2009;94:4655–7.PubMedGoogle Scholar
  129. 129.
    Improda N, Capalbo D, Cirillo E, Cerbone M, Esposito A, Pignata C, et al. Cutaneous vasculitis in patients with autoimmune polyendocrine syndrome type 1: report of a case and brief review of the literature. BMC Pediatr. 2014;14:272.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Zhang SY, Boisson-Dupuis S, Chapgier A, Yang K, Bustamante J, Puel A, et al. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev. 2008;226:29–40.PubMedGoogle Scholar
  131. 131.
    Oftedal BE, Kampe O, Meager A, Ahlgren KM, Lobell A, Husebye ES, et al. Measuring autoantibodies against IL-17F and IL-22 in autoimmune polyendocrine syndrome type I by radioligand binding assay using fusion proteins. Scand J Immunol. 2011;74:327–33.PubMedGoogle Scholar
  132. 132.
    Alimohammadi M, Bjorklund P, Hallgren A, Pontynen N, Szinnai G, Shikama N, et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med. 2008;358:1018–28.PubMedGoogle Scholar
  133. 133.
    Gavalas NG, Kemp EH, Krohn KJ, Brown EM, Watson PF, Weetman AP. The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 2007;92:2107–14.PubMedGoogle Scholar
  134. 134.
    Kemp EH, Habibullah M, Kluger N, Ranki A, Sandhu HK, Krohn KJ, et al. Prevalence and clinical associations of calcium-sensing receptor and NALP5 autoantibodies in Finnish APECED patients. J Clin Endocrinol Metab. 2014;99:1064–71.PubMedGoogle Scholar
  135. 135.
    Eisenbarth GS. Do NALP5 antibodies correlate with hypoparathyroidism in patients with APS-1? Nat Clin Pract Endocrinol Metab. 2008;4:544–5.PubMedGoogle Scholar
  136. 136.
    Gylling M, Tuomi T, Bjorses P, Kontiainen S, Partanen J, Christie MR, et al. ss-cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2000;85:4434–40.PubMedGoogle Scholar
  137. 137.
    Bratland E, Magitta NF, Boe Wolff AS, Ekern T, Knappskog PM, Kampe O, et al. Autoantibodies against aromatic amino acid hydroxylases in patients with autoimmune polyendocrine syndrome type 1 target multiple antigenic determinants and reveal regulatory regions crucial for enzymatic activity. Immunobiology. 2013;218:899–909.PubMedGoogle Scholar
  138. 138.
    Husebye ES, Gebre-Medhin G, Tuomi T, Perheentupa J, Landin-Olsson M, Gustafsson J, et al. Autoantibodies against aromatic L-amino acid decarboxylase in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab. 1997;82:147–50.PubMedGoogle Scholar
  139. 139.
    Bensing S, Fetissov SO, Mulder J, Perheentupa J, Gustafsson J, Husebye ES, et al. Pituitary autoantibodies in autoimmune polyendocrine syndrome type 1. Proc Natl Acad Sci U S A. 2007;104:949–54.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Reimand K, Perheentupa J, Link M, Krohn K, Peterson P, Uibo R. Testis-expressed protein TSGA10 an auto-antigen in autoimmune polyendocrine syndrome type I. Int Immunol. 2008;20:39–44.PubMedGoogle Scholar
  141. 141.
    Anderson MS, Su MA. Aire and T cell development. Curr Opin Immunol. 2010;23:198–206.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Teh CE, Daley SR, Enders A, Goodnow CC. T-cell regulation by casitas B-lineage lymphoma (Cblb) is a critical failsafe against autoimmune disease due to autoimmune regulator (Aire) deficiency. Proc Natl Acad Sci U S A. 2010;107:14709–14.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Meager A, Peterson P, Willcox N. Hypothetical review: thymic aberrations and type-I interferons; attempts to deduce autoimmunizing mechanisms from unexpected clues in monogenic and paraneoplastic syndromes. Clin Exp Immunol. 2008;154:141–51.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy: known and novel aspects of the syndrome. Ann N Y Acad Sci. 2012;1246:77–91.Google Scholar
  145. 145.
    Wolff AS, Karner J, Owe JF, Oftedal BE, Gilhus NE, Erichsen MM, et al. Clinical and serologic parallels to APS-I in patients with thymomas and autoantigen transcripts in their tumors. J Immunol. 2014;193:3880–90.PubMedCentralPubMedGoogle Scholar
  146. 146.
    Strobel P, Murumagi A, Klein R, Luster M, Lahti M, Krohn K, et al. Deficiency of the autoimmune regulator AIRE in thymomas is insufficient to elicit autoimmune polyendocrinopathy syndrome type 1 (APS-1). J Pathol. 2007;211:563–71.PubMedGoogle Scholar
  147. 147.
    Laakso SM, Kekalainen E, Rossi LH, Laurinolli TT, Mannerstrom H, Heikkila N, et al. IL-7 Dysregulation and Loss of CD8+ T Cell Homeostasis in the Monogenic Human Disease Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. J Immunol. 2011;187:2023–30.PubMedGoogle Scholar
  148. 148.
    Wolff AS, Oftedal BE, Kisand K, Ersvaer E, Lima K, Husebye ES. Flow cytometry study of blood cell subtypes reflects autoimmune and inflammatory processes in autoimmune polyendocrine syndrome type I. Scand J Immunol. 2010;71:459–67.PubMedGoogle Scholar
  149. 149.
    Kekalainen E, Tuovinen H, Joensuu J, Gylling M, Franssila R, Pontynen N, et al. A defect of regulatory T cells in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Immunol. 2007;178:1208–15.PubMedGoogle Scholar
  150. 150.
    Laakso SM, Laurinolli TT, Rossi LH, Lehtoviita A, Sairanen H, Perheentupa J, et al. Regulatory T cell defect in APECED patients is associated with loss of naive FOXP3(+) precursors and impaired activated population. J Autoimmun. 2010;35:351–7.PubMedGoogle Scholar
  151. 151.
    Ryan KR, Lawson CA, Lorenzi AR, Arkwright PD, Isaacs JD, Lilic D. CD4+CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Allergy Clin Immunol. 2005;116:1158–9.PubMedGoogle Scholar
  152. 152.
    Mathis D, Benoist C. Aire. Annu Rev Immunol. 2009;27:287–312.PubMedGoogle Scholar
  153. 153.
    Padeh S, Theodor R, Jonas A, Passwell JH. Severe malabsorption in autoimmune polyendocrinopathy-candidosis-ectodermal dystrophy syndrome successfully treated with immunosuppression. Arch Dis Child. 1997;76:532–4.PubMedCentralPubMedGoogle Scholar
  154. 154.
    O’Gorman CS, Shulman R, Lara-Corrales I, Pope E, Marcon M, Grasemann H, et al. A child with autoimmune polyendocrinopathy candidiasis and ectodermal dysplasia treated with immunosuppression: a case report. J Med Case Rep. 2013;7:44.PubMedCentralPubMedGoogle Scholar
  155. 155.
    York M, Sargur R, Shrimpton W, Egner W. Successful managment of APECED with Rituximab. J Clin Immunol. 2014;34 Suppl 2:S233.Google Scholar
  156. 156.
    Bakrac M, Jurisic V, Kostic T, Popovic V, Pekic S, Kraguljac N, et al. Pure red cell aplasia associated with type I autoimmune polyglandular syndrome-successful response to treatment with mycophenolate mofetil: case report and review of literature. J Clin Pathol. 2007;60:717–20.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Perniola R, Falorni A, Clemente MG, Forini F, Accogli E, Lobreglio G. Organ-specific and non-organ-specific autoantibodies in children and young adults with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Eur J Endocrinol. 2000;143(4):497–503.PubMedGoogle Scholar
  158. 158.
    Dal Pra C, Chen S, Betterle C, Zanchetta R, McGrath V, Furmaniak J, et al. Autoantibodies to human tryptophan hydroxylase and aromatic L-amino acid decarboxylase. Eur J Endocrinol. 2004;150(3):313–21.PubMedGoogle Scholar
  159. 159.
    Candeloro P, Voltattorni CB, Perniola R, Bertoldi M, Betterle C, Mannelli M, et al. Mapping of human autoantibody epitopes on aromatic L-amino acid decarboxylase. J Clin Endocrinol Metab. 2007;92(3):1096–105.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Biomedicine and Translational MedicineUniversity of TartuTartuEstonia

Personalised recommendations