Skip to main content

Advertisement

Log in

A mutation in the human tetraspanin CD81 gene is expressed as a truncated protein but does not enable CD19 maturation and cell surface expression

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

A homozygous mutation in a splice site of the CD81 gene was identified previously in a patient, as the cause in a case of common variable immune deficiency (CVID). CD19 expression is reduced in mice that lack CD81; however, B cells in this patient lacked completely CD19 surface expression. The mutation led to an absence of the CD81 protein on the cell surface and it was assumed that the CD81 protein was not produced. Here we demonstrate that a truncated human CD81 mutant (CD81mut) was actually produced, but retained intracellularly. We also demonstrate that the truncated CD81mut protein is in close proximity to the intracellularly sequestered CD19. However, this interaction does not enable normal CD19 maturation and surface expression. In addition, we show that specific domains of CD81 enable retrieval and trafficking of human CD19 to the cell surface. Finally, we demonstrate that surface expression of CD19 requires CD81, even in non-B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, et al. The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol. 2003;171(8):4062–72.

    Article  CAS  PubMed  Google Scholar 

  2. Miyazaki T, Muller U, Campbell KS. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. Embo J. 1997;16(14):4217–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci U S A. 1997;94(20):10844–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Maecker HT, Levy S. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med. 1997;185(8):1505–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74.

    Article  PubMed Central  PubMed  Google Scholar 

  6. van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJ, van Tol MJ, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.

    Article  PubMed  Google Scholar 

  7. Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, et al. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. 2007;8(8):663–70.

    Article  CAS  PubMed  Google Scholar 

  8. Tedder TF. CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol. 2009;5(10):572–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sato S, Steeber DA, Jansen PJ, Tedder TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol. 1997;158(10):4662–9.

    CAS  PubMed  Google Scholar 

  10. Bradbury LE, Goldmacher VS, Tedder TF. The CD19 signal transduction complex of B lymphocytes. Deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu 13. J Immunol. 1993;151(6):2915–27.

    CAS  PubMed  Google Scholar 

  11. Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol. 1992;149(9):2841–50.

    CAS  PubMed  Google Scholar 

  12. Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178(4):1407–17.

    Article  CAS  PubMed  Google Scholar 

  13. Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 2000;18:393–422.

    Article  CAS  PubMed  Google Scholar 

  14. Sato S, Miller AS, Howard MC, Tedder TF. Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J Immunol. 1997;159(7):3278–87.

    CAS  PubMed  Google Scholar 

  15. Rocha-Perugini V, Lavie M, Delgrange D, Canton J, Pillez A, Potel J, et al. The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. BMC Microbiol. 2009;9:111.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Higginbottom A, Quinn ER, Kuo CC, Flint M, Wilson LH, Bianchi E, et al. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol. 2000;74(8):3642–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Shoham T, Rajapaksa R, Kuo CC, Haimovich J, Levy S. Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol. 2006;26(4):1373–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rocha-Perugini V, Zamai M, Gonzalez-Granado JM, Barreiro O, Tejera E, Yanez-Mo M, et al. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol Cell Biol. 2013;33(18):3644–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Harman C, Zhong L, Ma L, Liu P, Deng L, Zhao Z, et al. A View of the E2-CD81 Interface at the Binding Site of a Neutralizing Antibody against Hepatitis C Virus. J Virol. 2015;89(1):492–501.

  20. Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, et al. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. Embo J. 2001;20(1–2):12–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3(12):995–1000.

    Article  PubMed  Google Scholar 

  22. Levy S, Shoham T. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 2005;5(2):136–48.

    Article  CAS  PubMed  Google Scholar 

  23. Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity. 1995;3(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  24. Homsi Y, Schloetel JG, Scheffer KD, Schmidt TH, Destainville N, Florin L, et al. The extracellular delta-domain is essential for the formation of CD81 tetraspanin webs. Biophys J. 2014;107(1):100–13.

    Article  CAS  PubMed  Google Scholar 

  25. Russ WP, Engelman DM. The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol. 2000;296(3):911–9.

    Article  CAS  PubMed  Google Scholar 

  26. Berditchevski F, Odintsova E. Tetraspanins as regulators of protein trafficking. Traffic. 2007;8(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  27. Manolios N, Bonifacino JS, Klausner RD. Transmembrane helical interactions and the assembly of the T cell receptor complex. Science. 1990;249(4966):274–7.

    Article  CAS  PubMed  Google Scholar 

  28. Fink A, Sal-Man N, Gerber D, Shai Y. Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. Biochim Biophys Acta. 2012;1818(4):974–83.

    Article  CAS  PubMed  Google Scholar 

  29. Seigneuret M. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J. 2006;90(1):212–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, et al. TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol. 2012;199(3):481–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, et al. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem. 2012;287(47):39753–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt-Arras D, Schwanbeck R, et al. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci. 2012;69(17):2919–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ronald Levy for critically editing the manuscript, Dr. Laurence Cocquerel for the hepatocyte Huh-7 CD81POS and Huh-7w7 CD81NEG cell lines, Debra Czerwinski for help with flow cytometric analyses and Dr. Francisco Sanchez Madrid for CD81shRNA.

Disclosure of conflict of interest

None of the authors have a conflict of interest.

Authorship contribution

FVC and CCK contributed equally to this work. FVC, CCK, YS, HC and NKM designed, performed and collected data, MCvZ and JMvD EBV-transformed and generated the patient’s B cell line, SL, FVC and YS designed the research, analyzed the data and wrote the manuscript.

Supported by a Specialized Center of Research (SCOR) grant from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoshana Levy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vences-Catalán, F., Kuo, CC., Sagi, Y. et al. A mutation in the human tetraspanin CD81 gene is expressed as a truncated protein but does not enable CD19 maturation and cell surface expression. J Clin Immunol 35, 254–263 (2015). https://doi.org/10.1007/s10875-015-0148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0148-2

Keywords

Navigation