Skip to main content

Advertisement

Log in

A Defective Oxidative Burst and Impaired Antigen Presentation are Hallmarks of Human Visceral Leishmaniasis

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Survival of the Leishmania parasite within monocytes hinges on its ability to effectively nullify their microbicidal effector mechanisms. Accordingly, this study aimed to delineate this biological niche in patients with visceral leishmaniasis (VL).

Methods

In monocytes, the redox status, antigen presenting capacity, expression of Toll-like receptors (TLRs), co-stimulatory molecules (CD80/86) and generation of intracellular cytokines (IL-8, IL-1β, IL-10 and LAP-TGF-β1) was measured by flow cytometry, levels of circulating cytokines (IL-1β, IL-6, TNF-α, IL-8, IL-4, IL-13, IL-10 and GM-CSF) by ELISA and arginase activity by spectrophotometry.

Results

Within monocytes, generation of an oxidative burst was markedly attenuated as evident by decreased generation of nitric oxide and reactive oxygen species, concomitant with raised levels of thiols. This was accompanied by lowered frequency of TLR4+ monocytes, but the arginase activity remained unaltered. Pathogen persistence was enhanced by the predominance of anti-inflammatory cytokines within monocytes, notably IL-10. Alongside, development of adaptive immunity was severely attenuated as manifested by a pronounced impairment of antigen presentation and co-stimulation evident by down regulation of CD54, HLA-DR and CD86. Treatment corrected the redox imbalance and reversed the impaired antigen presentation.

Conclusions

In VL, monocyte functions were severely impaired facilitating parasite persistence; anti-leishmanial chemotherapy mediated parasite elimination through modulation of the macrophage microenvironment by restoring its redox status and antigen presenting capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kaye P, Scott P. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol. 2011;9(8):604–15.

    Article  CAS  PubMed  Google Scholar 

  3. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2(10):907–16.

    Article  CAS  PubMed  Google Scholar 

  4. Mukhopadhyay D, Saha P, Chatterjee M. Targets for immunochemotherapy in leishmaniasis. Expert Rev Anti Infect Ther. 2012;10(3):261–4.

    Article  PubMed  Google Scholar 

  5. Saha P, Mukhopadhyay D, Chatterjee M. Immunomodulation by chemotherapeutic agents against Leishmaniasis. Int Immunopharmacol. 2011;11(11):1668–79.

    Article  CAS  PubMed  Google Scholar 

  6. Jüttner S, Bernhagen J, Metz CN, Röllinghoff M, Bucala R, Gessner A. Migration inhibitory factor induces killing of Leishmania major by macrophages: dependence on reactive nitrogen intermediates and endogenous TNF-alpha. J Immunol. 1998;161(5):2383–90.

    PubMed  Google Scholar 

  7. Ghosh S, Banerjee P, Sarkar A, Datta S, Chatterjee M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J Clin Microbiol. 2012;50(8):2774–8.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Sarkar A, Saha P, Mandal G, Mukhopadhyay D, Roy S, Singh SK, et al. Monitoring of intracellular nitric oxide in leishmaniasis: its applicability in patients with visceral leishmaniasis. Cytometry A. 2011;79(1):35–45.

    Article  PubMed  Google Scholar 

  9. Mukhopadhyay D, Das NK, Roy S, Kundu S, Barbhuiya JN, Chatterjee M. Miltefosine effectively modulates the cytokine milieu in Indian post kala-azar dermal leishmaniasis. J Infect Dis. 2011;204(9):1427–36.

    Article  CAS  PubMed  Google Scholar 

  10. Manna A, Saha P, Sarkar A, Mukhopadhyay D, Bauri AK, Kumar D, et al. Malabaricone-A induces a redox imbalance that mediates apoptosis in U937 cell line. PLoS One. 2012;7(5):e36938.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ganguly S, Das NK, Panja M, Pal S, Modak D, Rahaman M, et al. Increased levels of interleukin-10 and IgG3 are hallmarks of Indian post-kala-azar dermal leishmaniasis. J Infect Dis. 2008;197(12):1762–71.

    Article  CAS  PubMed  Google Scholar 

  12. Perry MR, Wyllie S, Prajapati VK, Feldmann J, Sundar S, Boelaert M, et al. Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl Trop Dis. 2011;5(9):e1227.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Assche VT, Deschacht M, da Luz RA, Maes L, Cos P. Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med. 2011;51(2):337–51.

    Article  PubMed  Google Scholar 

  14. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27(9–10):916–21.

    Article  CAS  PubMed  Google Scholar 

  15. Das P, Lahiri A, Lahiri A, Chakravorty D. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6(6):e1000899.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Greenfield EA, Nguyen KA, Kuchroo VK. CD28/B7 costimulation: a review. Crit Rev Immunol. 1998;18(5):389–418.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshinaga K, Obata H, Jurukovski V, Mazzieri R, Chen Y, Zilberberg L, et al. Perturbation of transforming growth factor (TGF)-beta1 association with latent TGF-beta binding protein yields inflammation and tumors. Proc Natl Acad Sci U S A. 2008;105(48):18758–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bogdan C, Röllinghoff M. How do protozoan parasites survive inside macrophages? Parasitol Today. 1999;15(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mougneau E, Bihl F, Glaichenhaus N. Cell biology and immunology of Leishmania. Immunol Rev. 2011;240(1):286–96.

    Article  CAS  PubMed  Google Scholar 

  20. Kropf P, Fuentes JM, Fähnrich E, Arpa L, Herath S, Weber V. Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J. 2005;19(8):1000–2.

    CAS  PubMed  Google Scholar 

  21. Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, Byus CV, et al. Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog. 2012;8(1):e1002417.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Abebe T, Hailu A, Woldeyes M, Mekonen W, Bilcha K, Cloke T, et al. Local increase of arginase activity in lesions of patients with cutaneous leishmaniasis in Ethiopia. PLoS Negl Trop Dis. 2012;6(6):e1684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gross TJ, Kremens K, Powers LS, Brink B, Knutson T, Domann PE, et al. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol. 2014;192(5):2326–38.

  24. Faria MS, Reis FCG, Lima CA, APCA. Toll-like receptors in Leishmania infections: guardians or promoters? J Parasitol Res. 2012. doi:10.1155/2012/930257.

    PubMed Central  PubMed  Google Scholar 

  25. Das S, Pandey K, Kumar A, Sardar AH, Purkait B, Kumar M, et al. TGF-β (1) re-programs TLR4 signaling in L. donovani infection: enhancement of SHP-1 and ubiquitin-editing enzyme A20. Immunol Cell Biol. 2012;90(6):640–54.

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee AK, Gupta G, Adhikari A, Majumder S, Kar Mahapatra S, Bhattacharyya Majumdar S, et al. Miltefosine triggers a strong proinflammatory cytokine response during visceral leishmaniasis: role of TLR4 and TLR9. Int Immunopharmacol. 2012;12(4):565–72.

    Article  CAS  PubMed  Google Scholar 

  27. Passwell JH, Shor R, Smolen J, Jaffe CL. Infection of human monocytes by Leishmania results in a defective oxidative burst. Int J Exp Pathol. 1994;75(4):277–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kumar R, Pai K, Sundar S. Reactive oxygen intermediates, nitrite and IFN-gamma in Indian visceral leishmaniasis. Clin Exp Immunol. 2001;124(2):262–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kumar P, Pai K, Pandey HP, Sundar S. NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of visceral leishmaniasis patients. J Med Microbiol. 2002;51(10):832–6.

    CAS  PubMed  Google Scholar 

  30. Sarkar A, Mandal G, Singh N, Sundar S, Chatterjee M. Flow cytometric determination of intracellular non-protein thiols in Leishmania promastigotes using 5-chloromethyl fluorescein diacetate. Exp Parasitol. 2009;122(4):299–305.

    Article  CAS  PubMed  Google Scholar 

  31. Lebedeva T, Dustin ML, Sykulev Y. ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol. 2005;17(3):251–8.

    Article  CAS  PubMed  Google Scholar 

  32. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25(6):280–8.

    Article  CAS  PubMed  Google Scholar 

  33. de Almeida MC, Cardoso SA, Barral-Netto M. Leishmania (Leishmania) chagasi infection alters the expression of cell adhesion and costimulatory molecules on human monocyte and macrophage. Int J Parasitol. 2003;33(2):153–62.

    Article  PubMed  Google Scholar 

  34. Freitas-Teixeira PM, Silveira-Lemos D, Giunchetti RC, Baratta-Masini A, Mayrink W, Peruhype-Magalhães V, et al. Distinct pattern of immunophenotypic features of innate and adaptive immunity as a putative signature of clinical and laboratorial status of patients with localized cutaneous leishmaniasis. Scand J Immunol. 2012;76(4):421–32.

    Article  CAS  PubMed  Google Scholar 

  35. Cillari E, Vitale G, Arcoleo F, D'Agostino P, Mocciaro C, Gambino G, et al. In vivo and in vitro cytokine profiles and mononuclear cell subsets in Sicilian patients with active visceral leishmaniasis. Cytokine. 1995;7(7):740–5.

    Article  CAS  PubMed  Google Scholar 

  36. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Vieira ÉL, Keesen TS, Machado PR, Guimarães LH, Carvalho M, Dutra WO, et al. Immunoregulatory profile of monocytes from cutaneous leishmaniasis patients and association with lesion size. Parasite Immunol. 2013;35(2):65–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Carrada G, Cañeda C, Salaiza N, Delgado J, Ruiz A, Sanchez B, et al. Monocyte cytokine and costimulatory molecule expression in patients infected with Leishmania mexicana. Parasite Immunol. 2007;29(3):117–26.

    Article  CAS  PubMed  Google Scholar 

  39. Alexander J, Bryson K. T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunol Lett. 2005;99(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  40. Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, Hashim FA, et al. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest. 1993;91(4):1644–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S. Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis. 1998;177(3):815–8.

    Article  CAS  PubMed  Google Scholar 

  42. Raziuddin S, Abdalla RE, el-Awad EH, al-Janadi M. Immunoregulatory and proinflammatory cytokine production in visceral and cutaneous leishmaniasis. J Infect Dis. 1994;170(4):1037–40.

    Article  CAS  PubMed  Google Scholar 

  43. Kocyigit A, Gur S, Gurel MS, Bulut V, Ulukanligil M. Antimonial therapy induces circulating proinflammatory cytokines in patients with cutaneous leishmaniasis. Infect Immun. 2002;70(12):6589–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Santos-Oliveira JR, Regis EG, Leal CR, Cunha RV, Bozza PT, Da-Cruz AM. Evidence that lipopolisaccharide may contribute to the cytokine storm and cellular activation in patients with visceral leishmaniasis. PLoS Negl Trop Dis. 2011;5(7):e1198.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Aga E, Katschinski DM, Zandbergen VG, Laufs H, Hansen B, Müller K, et al. Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J Immunol. 2002;169(2):898–905.

    Article  CAS  PubMed  Google Scholar 

  46. Kumar V, Bimal S, Singh SK, Chaudhary R, Das S, Lal C, et al. Leishmania donovani: dynamics of L. donovani evasion of innate immune cell attack due to malnutrition in visceral leishmaniasis, Nutrition. 2014;30(4):449-58.

  47. Ansari NA, Sharma P, Salotra P. Circulating nitric oxide and C-reactive protein levels in Indian kala azar patients: correlation with clinical outcome. Clin Immunol. 2007;122(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kima PE. The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. Int J Parasitol. 2007;37(10):1087–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D, Mallick S, et al. IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol. 2007;179(8):5592–603.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance was provided by Indian Council for Medical Research (ICMR), Council for Scientific & Industrial Research (CSIR) and Department of Science and Technology (DST), Govt. of India. S.R. is recipient of a Senior Research fellowship from CSIR, D.M. and S.G. are recipients of a Senior Research fellowship from ICMR, Govt. of India while S.M. is a recipient of an INSPIRE-Senior Research fellowship from DST, Govt. of India.

Conflict of Interest

The authors report no conflict of interest and are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Mukhopadhyay, D., Mukherjee, S. et al. A Defective Oxidative Burst and Impaired Antigen Presentation are Hallmarks of Human Visceral Leishmaniasis. J Clin Immunol 35, 56–67 (2015). https://doi.org/10.1007/s10875-014-0115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0115-3

Keywords

Navigation