Advertisement

Journal of Clinical Immunology

, Volume 34, Issue 7, pp 772–779 | Cite as

XLP: Clinical Features and Molecular Etiology due to Mutations in SH2D1A Encoding SAP

  • Stuart G TangyeEmail author
Key Review Article

Abstract

X-linked lymphoproliferative disease (XLP) is a rare primary immunodeficiency affecting approximately 1–2 per 1 million males. A key feature of XLP is the exquisite sensitivity of affected individuals to disease induced following EBV infection. However, patients can also develop hypogammaglobulinemia and B-cell lymphoma independently of exposure to EBV. XLP is caused by loss-of function mutations in SH2D1A, which encodes the intracellular adaptor molecule SAP. SAP is predominantly expressed in T cells and NK cells, and functions to regulate signal transduction pathways downstream of the SLAM family of surface receptors to control CD4+ T cell (and by extension B cells), CD8+ T cell and NK cell function, as well as the development of NKT cells. The study of XLP had shed substantial light on the requirements for lymphocyte differentiation and immune regulation, which in turn have the potential to be translated into novel treatments for not only XLP patients but individuals affected by EBV-induced disease, impaired humoral immunity and malignancy.

Keywords

XLP SAP EBV hypogammaglobulinemia infectious mononucleosis lymphoma PID 

References

  1. 1.
    Purtilo DT, Cassel CK, Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet. 1975;1(7913):935–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Bar RS, DeLor CJ, Clausen KP, Hurtubise P, Henle W, Hewetson JF. Fatal infectious mononucleosis in a family. N Engl J Med. 1974;290(7):363–7. doi: 10.1056/NEJM197402142900704.PubMedCrossRefGoogle Scholar
  3. 3.
    Provisor AJ, Iacuone JJ, Chilcote RR, Neiburger RG, Crussi FG. Acquired agammaglobulinemia after a life-threatening illness with clinical and laboratory features of infectious mononucleosis in three related male children. N Engl J Med. 1975;293(2):62–5. doi: 10.1056/NEJM197507102930202.PubMedCrossRefGoogle Scholar
  4. 4.
    Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4. doi: 10.1038/nature05257.PubMedCrossRefGoogle Scholar
  5. 5.
    Veillette A, Perez-Quintero LA, Latour S. X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Curr Opin Allergy Clin Immunol. 2013;13(6):614–22. doi: 10.1097/ACI.0000000000000008.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamilton JK, Paquin LA, Sullivan JL, Maurer HS, Cruzi FG, Provisor AJ, et al. X-linked lymphoproliferative syndrome registry report. J Pediatr. 1980;96(4):669–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Purtilo DT, Sakamoto K, Barnabei V, Seeley J, Bechtold T, Rogers G, et al. Epstein-Barr virus-induced diseases in boys with the X-linked lymphoproliferative syndrome (XLP): update on studies of the registry. Am J Med. 1982;73(1):49–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Sullivan JL, Byron KS, Brewster FE, Baker SM, Ochs HD. X-linked lymphoproliferative syndrome. Natural history of the immunodeficiency. J Clin Invest. 1983;71(6):1765–78.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and epstein-barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96(9):3118–25.PubMedGoogle Scholar
  10. 10.
    Morra M, Howie D, Grande MS, Sayos J, Wang N, Wu C, et al. X-linked lymphoproliferative disease: a progressive immunodeficiency. Annu Rev Immunol. 2001;19:657–82. doi: 10.1146/annurev.immunol.19.1.657.PubMedCrossRefGoogle Scholar
  11. 11.
    Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev. 2005;203:180–99. doi: 10.1111/j.0105-2896.2005.00230.x.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol. 2007;25:337–79. doi: 10.1146/annurev.immunol.25.022106.141651.PubMedCrossRefGoogle Scholar
  13. 13.
    Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol. 2011;152(1):13–30. doi: 10.1111/j.1365-2141.2010.08442.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53–62. doi: 10.1182/blood-2010-06-284935.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117(5):1522–9. doi: 10.1182/blood-2010-07-298372.PubMedCrossRefGoogle Scholar
  16. 16.
    Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38(4):471–8. doi: 10.1203/00006450-199510000-00001.PubMedCrossRefGoogle Scholar
  17. 17.
    Tomkinson BE, Wagner DK, Nelson DL, Sullivan JL. Activated lymphocytes during acute Epstein-Barr virus infection. J Immunol. 1987;139(11):3802–7.PubMedGoogle Scholar
  18. 18.
    Skare JC, Milunsky A, Byron KS, Sullivan JL. Mapping the X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1987;84(7):2015–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Skare JC, Sullivan JL, Milunsky A. Mapping the mutation causing the X-linked lymphoproliferative syndrome in relation to restriction fragment length polymorphisms on Xq. Hum Genet. 1989;82(4):349–53.PubMedGoogle Scholar
  20. 20.
    Sanger WG, Grierson HL, Skare J, Wyandt H, Pirruccello S, Fordyce R, et al. Partial Xq25 deletion in a family with the X-linked lymphoproliferative disease (XLP). Cancer Genet Cytogenet. 1990;47(2):163–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462–9. doi: 10.1038/26683.PubMedCrossRefGoogle Scholar
  22. 22.
    Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129–35. doi: 10.1038/2424.PubMedCrossRefGoogle Scholar
  23. 23.
    Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;95(23):13765–70.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Schwartzberg PL, Mueller KL, Qi H, Cannons JL. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat Rev Immunol. 2009;9(1):39–46. doi: 10.1038/nri2456.PubMedCrossRefGoogle Scholar
  25. 25.
    Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity. Annu Rev Immunol. 2011;29:665–705. doi: 10.1146/annurev-immunol-030409-101302.PubMedCrossRefGoogle Scholar
  26. 26.
    Bottino C, Falco M, Parolini S, Marcenaro E, Augugliaro R, Sivori S, et al. NTB-A, a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J Exp Med. 2001;194(3):235–46.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med. 2000;192(3):337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, et al. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol. 2011;9(11):e1001187. doi: 10.1371/journal.pbio.1001187.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Dong Z, Davidson D, Perez-Quintero LA, Kurosaki T, Swat W, Veillette A. The adaptor SAP controls NK cell activation by regulating the enzymes Vav-1 and SHIP-1 and by enhancing conjugates with target cells. Immunity. 2012;36(6):974–85. doi: 10.1016/j.immuni.2012.03.023.PubMedCrossRefGoogle Scholar
  30. 30.
    Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, et al. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity. 2012;36(6):986–1002. doi: 10.1016/j.immuni.2012.05.016.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhao F, Cannons JL, Dutta M, Griffiths GM, Schwartzberg PL. Positive and negative signaling through SLAM receptors regulate synapse organization and thresholds of cytolysis. Immunity. 2012;36(6):1003–16. doi: 10.1016/j.immuni.2012.05.017.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Latour S, Gish G, Helgason CD, Humphries RK, Pawson T, Veillette A. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat Immunol. 2001;2(8):681–90. doi: 10.1038/90615.PubMedCrossRefGoogle Scholar
  33. 33.
    Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, Schwartzberg PL, et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol. 2003;5(2):149–54. doi: 10.1038/ncb919.PubMedCrossRefGoogle Scholar
  34. 34.
    Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, et al. SAP couples Fyn to SLAM immune receptors. Nat Cell Biol. 2003;5(2):155–60. doi: 10.1038/ncb920.PubMedCrossRefGoogle Scholar
  35. 35.
    Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, Nichols KE, et al. SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity. 2004;21(5):693–706. doi: 10.1016/j.immuni.2004.09.012.PubMedCrossRefGoogle Scholar
  36. 36.
    Davidson D, Shi X, Zhang S, Wang H, Nemer M, Ono N, et al. Genetic evidence linking SAP, the X-linked lymphoproliferative gene product, to Src-related kinase FynT in T(H)2 cytokine regulation. Immunity. 2004;21(5):707–17. doi: 10.1016/j.immuni.2004.10.005.PubMedCrossRefGoogle Scholar
  37. 37.
    Cannons JL, Yu LJ, Jankovic D, Crotty S, Horai R, Kirby M, et al. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J Exp Med. 2006;203(6):1551–65. doi: 10.1084/jem.20052097.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Garni-Wagner BA, Purohit A, Mathew PA, Bennett M, Kumar V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J Immunol. 1993;151(1):60–70.PubMedGoogle Scholar
  39. 39.
    Mathew PA, Garni-Wagner BA, Land K, Takashima A, Stoneman E, Bennett M, et al. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells. J Immunol. 1993;151(10):5328–37.PubMedGoogle Scholar
  40. 40.
    Valiante NM, Trinchieri G. Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes. J Exp Med. 1993;178(4):1397–406.PubMedCrossRefGoogle Scholar
  41. 41.
    Tangye SG, Lazetic S, Woollatt E, Sutherland GR, Lanier LL, Phillips JH. Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J Immunol. 1999;162(12):6981–5.PubMedGoogle Scholar
  42. 42.
    Cocks BG, Chang CC, Carballido JM, Yssel H, de Vries JE, Aversa G. A novel receptor involved in T-cell activation. Nature. 1995;376(6537):260–3. doi: 10.1038/376260a0.PubMedCrossRefGoogle Scholar
  43. 43.
    Carballido JM, Aversa G, Kaltoft K, Cocks BG, Punnonen J, Yssel H, et al. Reversal of human allergic T helper 2 responses by engagement of signaling lymphocytic activation molecule. J Immunol. 1997;159(9):4316–21.PubMedGoogle Scholar
  44. 44.
    Bouchon A, Cella M, Grierson HL, Cohen JI, Colonna M. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167(10):5517–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Hislop AD, Palendira U, Leese AM, Arkwright PD, Rohrlich PS, Tangye SG, et al. Impaired Epstein-Barr virus-specific CD8+ T-cell function in X-linked lymphoproliferative disease is restricted to SLAM family-positive B-cell targets. Blood. 2010;116(17):3249–57. doi: 10.1182/blood-2009-09-238832.PubMedCrossRefGoogle Scholar
  46. 46.
    Sullivan JL, Byron KS, Brewster FE, Purtilo DT. Deficient natural killer cell activity in x-linked lymphoproliferative syndrome. Science. 1980;210(4469):543–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Harada S, Bechtold T, Seeley JK, Purtilo DT. Cell-mediated immunity to Epstein-Barr virus (EBV) and natural killer (NK)-cell activity in the X-linked lymphoproliferative syndrome. Int J Cancer. 1982;30(6):739–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Nakajima H, Cella M, Bouchon A, Grierson HL, Lewis J, Duckett CS, et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur J Immunol. 2000;30(11):3309–18. doi: 10.1002/1521-4141(200011)30:11<3309::AID-IMMU3309>3.0.CO;2-3.PubMedCrossRefGoogle Scholar
  49. 49.
    Tangye SG, Phillips JH, Lanier LL, Nichols KE. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J Immunol. 2000;165(6):2932–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Lai PK, Yasuda N, Purtilo DT. Immunoregulatory T cells in males vulnerable to Epstein-Barr virus with the X-linked lymphoproliferative syndrome. Am J Pediatr Hematol Oncol. 1987;9(2):179–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity. 2007;27(5):751–62. doi: 10.1016/j.immuni.2007.08.020.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Li W, Sofi MH, Rietdijk S, Wang N, Terhorst C, Chang CH. The SLAM-associated protein signaling pathway is required for development of CD4+ T cells selected by homotypic thymocyte interaction. Immunity. 2007;27(5):763–74. doi: 10.1016/j.immuni.2007.10.008.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132(3):515–25. doi: 10.1016/j.jaci.2013.07.020. quiz 26.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lunemann A, Vanoaica LD, Azzi T, Nadal D, Munz C. A distinct subpopulation of human NK cells restricts B cell transformation by EBV. J Immunol. 2013;191(10):4989–95. doi: 10.4049/jimmunol.1301046.PubMedCrossRefGoogle Scholar
  55. 55.
    Strowig T, Brilot F, Arrey F, Bougras G, Thomas D, Muller WA, et al. Tonsilar NK cells restrict B cell transformation by the Epstein-Barr virus via IFN-gamma. PLoS Pathog. 2008;4(2):e27. doi: 10.1371/journal.ppat.0040027.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep. 2013;5(6):1489–98. doi: 10.1016/j.celrep.2013.11.041.PubMedCrossRefGoogle Scholar
  57. 57.
    Thorley-Lawson DA, Schooley RT, Bhan AK, Nadler LM. Epstein-Barr virus superinduces a new human B cell differentiation antigen (B-LAST 1) expressed on transformed lymphoblasts. Cell. 1982;30(2):415–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest. 2010;120(4):939–49. doi: 10.1172/JCI40567.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Harada S, Sakamoto K, Seeley JK, Lindsten T, Bechtold T, Yetz J, et al. Immune deficiency in the X-linked lymphoproliferative syndrome. I. Epstein-Barr virus-specific defects. J Immunol. 1982;129(6):2532–5.PubMedGoogle Scholar
  60. 60.
    Ochs HD, Sullivan JL, Wedgwood RJ, Seeley JK, Sakamoto K, Purtilo DT. X-linked lymphoproliferative syndrome: abnormal antibody responses to bacteriophage phi X 174. Birth Defects Orig Artic Ser. 1983;19(3):321–3.PubMedGoogle Scholar
  61. 61.
    Grierson HL, Skare J, Hawk J, Pauza M, Purtilo DT. Immunoglobulin class and subclass deficiencies prior to Epstein-Barr virus infection in males with X-linked lymphoproliferative disease. Am J Med Genet. 1991;40(3):294–7. doi: 10.1002/ajmg.1320400309.PubMedCrossRefGoogle Scholar
  62. 62.
    Lindsten T, Seeley JK, Ballow M, Sakamoto K, St Onge S, Yetz J, et al. Immune deficiency in the X-linked lymphoproliferative syndrome. II. Immunoregulatory T cell defects. J Immunol. 1982;129(6):2536–40.PubMedGoogle Scholar
  63. 63.
    Rousset F, Souillet G, Roncarolo MG, Lamelin JP. Studies of EBV-lymphoid cell interactions in two patients with the X-linked lymphoproliferative syndrome: normal EBV-specific HLA-restricted cytotoxicity. Clin Exp Immunol. 1986;63(2):280–9.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Ma CS, Hare NJ, Nichols KE, Dupre L, Andolfi G, Roncarolo MG, et al. Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest. 2005;115(4):1049–59. doi: 10.1172/JCI23139.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ma CS, Pittaluga S, Avery DT, Hare NJ, Maric I, Klion AD, et al. Selective generation of functional somatically mutated IgM + CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest. 2006;116(2):322–33. doi: 10.1172/JCI25720.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63. doi: 10.1146/annurev-immunol-031210-101400.PubMedCrossRefGoogle Scholar
  67. 67.
    Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209(7):1241–53. doi: 10.1084/jem.20120994.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - TFH cells in human health and disease. Nat Rev Immunol. 2013;13(6):412–26. doi: 10.1038/nri3447.PubMedCrossRefGoogle Scholar
  69. 69.
    Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J, et al. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity. 2010;32(2):253–65. doi: 10.1016/j.immuni.2010.01.010.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature. 2008;455(7214):764–9. doi: 10.1038/nature07345.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Yusuf I, Kageyama R, Monticelli L, Johnston RJ, Ditoro D, Hansen K, et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J Immunol. 2010;185(1):190–202. doi: 10.4049/jimmunol.0903505.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Morra M, Silander O, Calpe S, Choi M, Oettgen H, Myers L, et al. Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood. 2001;98(5):1321–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Sandlund JT, Shurtleff SA, Onciu M, Horwitz E, Leung W, Howard V, et al. Frequent mutations in SH2D1A (XLP) in males presenting with high-grade mature B-cell neoplasms. Pediatr Blood Cancer. 2013;60(9):E85–7. doi: 10.1002/pbc.24525.PubMedCrossRefGoogle Scholar
  74. 74.
    Wada T, Candotti F. Somatic mosaicism in primary immune deficiencies. Curr Opin Allergy Clin Immunol. 2008;8(6):510–4. doi: 10.1097/ACI.0b013e328314b651.PubMedCrossRefGoogle Scholar
  75. 75.
    Conley ME, Lavoie A, Briggs C, Brown P, Guerra C, Puck JM. Nonrandom X chromosome inactivation in B cells from carriers of X chromosome-linked severe combined immunodeficiency. Proc Natl Acad Sci U S A. 1988;85(9):3090–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Conley ME, Puck JM. Carrier detection in typical and atypical X-linked agammaglobulinemia. J Pediatr. 1988;112(5):688–94.PubMedCrossRefGoogle Scholar
  77. 77.
    Palendira U, Low C, Bell AI, Ma CS, Abbott RJ, Phan TG, et al. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. J Exp Med. 2012;209(5):913–24. doi: 10.1084/jem.20112391.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lankester AC, Visser LF, Hartwig NG, Bredius RG, Gaspar HB, van der Burg M, et al. Allogeneic stem cell transplantation in X-linked lymphoproliferative disease: two cases in one family and review of the literature. Bone Marrow Transplant. 2005;36(2):99–105. doi: 10.1038/sj.bmt.1705016.PubMedCrossRefGoogle Scholar
  79. 79.
    Milone MC, Tsai DE, Hodinka RL, Silverman LB, Malbran A, Wasik MA, et al. Treatment of primary Epstein-Barr virus infection in patients with X-linked lymphoproliferative disease using B-cell-directed therapy. Blood. 2005;105(3):994–6. doi: 10.1182/blood-2004-07-2965.PubMedCrossRefGoogle Scholar
  80. 80.
    Rivat C, Booth C, Alonso-Ferrero M, Blundell M, Sebire NJ, Thrasher AJ, et al. SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease. Blood. 2013;121(7):1073–6. doi: 10.1182/blood-2012-07-445858.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Immunology Research ProgramGarvan Institute of Medical ResearchSydneyAustralia
  2. 2.St Vincent’s Clinical SchoolUniversity of New South WalesSydneyAustralia

Personalised recommendations