Skip to main content
Log in

Elevated Double Negative T Cells in Pediatric Autoimmunity

  • Brief Communication
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Autoimmune diseases are thought to be caused by a loss of self-tolerance of the immune system. One candidate marker of immune dysregulation in autoimmune disease is the presence of increased double negative T cells (DNTs) in the periphery. DNTs are characteristically elevated in autoimmune lymphoproliferative syndrome, a systemic autoimmune disease caused by defective lymphocyte apoptosis due to Fas pathway defects. DNTs have also been found in the peripheral blood of adult patients with systemic lupus erythematosus (SLE), where they may be pathogenic. DNTs in children with autoimmune disease have not been investigated.

Methods

We evaluated DNTs in pediatric patients with SLE, mixed connective tissue disease (MCTD), juvenile idiopathic arthritis (JIA), or elevated antinuclear antibody (ANA) but no systemic disease. DNTs (CD3+CD56TCRαβ+CD4CD8) from peripheral blood mononuclear cells were analyzed by flow cytometry from 54 pediatric patients including: 23 SLE, 15 JIA, 11 ANA and 5 MCTD compared to 28 healthy controls.

Results

Sixteen cases (29.6 %) had elevated DNTs (≥2.5 % of CD3+CD56TCRαβ+ cells) compared to 1 (3.6 %) control. Medication usage including cytotoxic drugs and absolute lymphocyte count were not associated with DNT levels, and percentages of DNTs were stable over time. Analysis of multiple phenotypic and activation markers showed increased CD45RA expression on DNTs from patients with autoimmune disease compared to controls.

Conclusion

DNTs are elevated in a subset of pediatric patients with autoimmune disease and additional investigations are required to determine their precise role in autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Thomas JW. Antigen-specific responses in autoimmunity and tolerance. Immunol Res. 2001;23:235–44.

    Article  CAS  PubMed  Google Scholar 

  2. Sieling PA, Porcelli SA, Duong BT, Spada F, Bloom BR, Diamond B, et al. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J Immunol. 2000;165:5338–44.

    Article  CAS  PubMed  Google Scholar 

  3. Fleisher TA, Oliveira JB. Monogenic defects in lymphocyte apoptosis. Curr Opin Allergy Clin Immunol. 2012;12:609–15.

    Article  CAS  PubMed  Google Scholar 

  4. Vaishnaw AK, Toubi E, Ohsako S, Drappa J, Buys S, Estrada J, et al. The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum. 1999;42:1833–42.

    Article  CAS  PubMed  Google Scholar 

  5. Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116:e35–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Turbyville JC, Rao VK. The autoimmune lymphoproliferative syndrome: a rare disorder providing clues about normal tolerance. Autoimmun Rev. 2010;9:488–93.

    Article  CAS  PubMed  Google Scholar 

  7. Dowdell KC, Niemela JE, Price S, Davis J, Hornung RL, Oliveira JB, et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood. 2010;115:5164–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Holzelova E, Vonarbourg C, Stolzenberg M-C, Arkwright PD, Selz F, Prieur A-M, et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med. 2004;351:1409–18.

    Article  CAS  PubMed  Google Scholar 

  9. Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181:8761–6.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Shivakumar S, Tsokos GC, Datta SK. T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J Immunol. 1989;143:103–12.

    CAS  PubMed  Google Scholar 

  11. Anand A, Dean G, Quereshi K, Isenberg D, Lydyard P. Characterization of CD3 + CD4-CD8- (double negative) T cells in patients with systemic lupus erythematosus: activation markers. Lupus. 2002;11:493–500.

    Article  CAS  PubMed  Google Scholar 

  12. Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR-αβ + CD4–CD8- double-negative T cells. Eur J Immunol. 2011;41:739–48.

    Article  CAS  PubMed  Google Scholar 

  13. Hillhouse EE, Lesage S. A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun. 2012;1–8.

  14. Juvet SC, Zhang L. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol. 2012;4:48–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hochberg M. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  CAS  PubMed  Google Scholar 

  16. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390–2.

    PubMed  Google Scholar 

  17. Seif AE, Manno CS, Sheen C, Grupp SA, Teachey DT. Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood. 2010;115:2142–5.

    Article  CAS  PubMed  Google Scholar 

  18. Niemela JE, Hsu AP, Fleisher TA, Puck JM. Single nucleotide polymorphisms in the apoptosis receptor gene TNFRSF6. Mol Cell Probes. 2006;20:21–6.

    Article  CAS  PubMed  Google Scholar 

  19. Appay V, Reynard S, Voelter V, Romero P, Speiser DE, Leyvraz S. Immuno-monitoring of CD8+ T cells in whole blood versus PBMC samples. J Clin Immunol. 2006;309:192–9.

    CAS  Google Scholar 

  20. Teachey DT, Seif AE, Grupp SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Brit J Haematol. 2009;148:205–16.

    Article  Google Scholar 

  21. Bleesing JJ, Brown MR, Novicio C, Guarraia D, Dale JK, Straus SE, et al. A composite picture of TcRα/β + CD4-CD8- T Cells (α/β-DNTCs) in humans with Autoimmune Lymphoproliferative Syndrome. Clin Immunol. 2002;104:21–30.

    Article  CAS  PubMed  Google Scholar 

  22. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17:1290–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Henson SM, Riddell NE, Akbar AN. Properties of end-stage human T cells defined by CD45RA re-expression. Curr Opin Immunol. 2012;24:476–81.

    Article  CAS  PubMed  Google Scholar 

  24. Mehal WZ, Crispe IN. TCR ligation on CD8+ T cells creates double-negative cells in vivo. J Immunol. 1998;161:1686–93.

    CAS  PubMed  Google Scholar 

  25. Crispín JC, Tsokos GC. Human TCR-alpha beta + CD4–CD8- T cells can derive from CD8+ T cells and display an inflammatory effector phenotype. J Immunol. 2009;183:4675–81.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pisitkun P, Ha H-L, Wang H, Claudio E, Tivy CC, Zhou H, et al. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity. 2012;37:1104–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, et al. Isolation and characterization of human antigen-specific TCR alpha beta + CD4 (−) CD8-double-negative regulatory T cells. Blood. 2005;105:2828–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. George Van Hare, David Balzer, and Katie Plax for their help in patient recruitment and sample acquisition. Funding for this project was provided by the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (to M.A.C.) and by NIH training grant 5T32AR007279-34 (J.A.T.).

Research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1 TR000448 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan A. Cooper.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34.5 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarbox, J.A., Keppel, M.P., Topcagic, N. et al. Elevated Double Negative T Cells in Pediatric Autoimmunity. J Clin Immunol 34, 594–599 (2014). https://doi.org/10.1007/s10875-014-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0038-z

Keywords

Navigation