Skip to main content

Advertisement

Log in

A Rapid Ex Vivo Clinical Diagnostic Assay for Fas Receptor-Induced T Lymphocyte Apoptosis

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Deleterious mutations in genes involved in the Fas apoptosis pathway lead to Autoimmune Lymphoproliferative Syndrome (ALPS). Demonstration of an apoptosis defect is critical for the diagnosis and study of ALPS. The traditional in vitro apoptosis assay, however, requires a week of experimental procedures. Here, we show that defects in Fas-induced apoptosis in PBMCs can be evaluated directly ex vivo using multicolor flow cytometry to analyze the apoptosis of effector memory T cells, a Fas-sensitive subset of PBMCs. This method allowed us to sensitively quantify defective apoptosis in ALPS patients within a few hours. Some ALPS patients (ALPS-sFAS) without germline mutations have somatic mutations in Fas specifically in double-negative αβ T cells (DNTs), an unusual lymphocyte population that is characteristically expanded in ALPS. Since DNTs have been notoriously difficult to culture, defective apoptosis has not been previously demonstrated for ALPS-sFAS patients. Using our novel ex vivo apoptosis assay, we measured Fas-induced apoptosis of DNTs for the first time and found that ALPS-sFAS patients had significant apoptosis defects in these cells compared to healthy controls. Hence, this rapid apoptosis assay can expedite the diagnosis of new ALPS patients, including those with somatic mutations, and facilitate clinical and molecular investigation of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turbyville JC, Rao VK. The autoimmune lymphoproliferative syndrome: a rare disorder providing clues about normal tolerance. Autoimmun Rev. 2010;9(7):488–93.

    Article  PubMed  CAS  Google Scholar 

  2. Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):5741–51.

    Article  PubMed  CAS  Google Scholar 

  3. Bouillet P, O’Reilly LA. CD95, BIM and T cell homeostasis. Nat Rev Immunol. 2009;9(7):514–9.

    Article  PubMed  CAS  Google Scholar 

  4. Su HC, Lenardo MJ. Lessons from autoimmune lymphoproliferative syndrome. Drug Discov Today Dis Mech. 2005;2(4):495–502.

    Article  CAS  Google Scholar 

  5. Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40.

    Article  PubMed  CAS  Google Scholar 

  6. Seif AE, Manno CS, Sheen C, Grupp SA, Teachey DT. Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood. 2010;115(11):2142–5.

    Article  PubMed  CAS  Google Scholar 

  7. Rensing-Ehl A, Warnatz K, Fuchs S, Schlesier M, Salzer U, Draeger R, et al. Clinical and immunological overlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin Immunol. 2010;137(3):357–65.

    Article  PubMed  CAS  Google Scholar 

  8. Lenardo MJ, Oliveira JB, Zheng L, Rao VK. ALPS-ten lessons from an international workshop on a genetic disease of apoptosis. Immunity. 2010;32(3):291–5.

    Article  PubMed  CAS  Google Scholar 

  9. Riou C, Yassine-Diab B, Van grevenynghe J, Somogyi R, Greller LD, Gagnon D, et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J Exp Med. 2007;204(1):79–91.

    Article  PubMed  CAS  Google Scholar 

  10. Ramaswamy M, Cruz AC, Cleland SY, Deng M, Price S, Rao VK, et al. Specific elimination of effector memory CD4+ T cells due to enhanced Fas signaling complex formation and association with lipid raft microdomains. Cell Death Differ. 2011;18(4):712–20.

    Article  PubMed  CAS  Google Scholar 

  11. Sneller MC, Wang J, Dale JK, Strober W, Middelton LA, Choi Y, et al. Clincal, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89(4):1341–8.

    PubMed  CAS  Google Scholar 

  12. Bleesing JJ, Brown MR, Straus SE, Dale JK, Siegel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98(8):2466–73.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu AP, Dowdell KC, Davis J, Niemela JE, Anderson SM, Shaw PA, et al. Autoimmune lymphoproliferative syndrome due to FAS mutations outside the signal-transducing death domain: molecular mechanisms and clinical penetrance. Genet Med. 2012;14(1):81–9.

    Article  PubMed  CAS  Google Scholar 

  14. Jackson CE, Fischer RE, Hsu AP, Anderson SM, Choi Y, Wang J, et al. Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am J Hum Genet. 1999;64(4):1002–14.

    Article  PubMed  CAS  Google Scholar 

  15. Martin DA, Zheng L, Siegel RM, Huang B, Fisher GH, Wang J, et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc Natl Acad Sci U S A. 1999;96(8):4552–7.

    Article  PubMed  CAS  Google Scholar 

  16. Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F, Prieur AM, et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med. 2004;351(14):1409–18.

    Article  PubMed  CAS  Google Scholar 

  17. Dowdell KC, Niemela JE, Price S, Davis J, Hornung RL, Oliveira JB, et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood. 2010;115(25):5164–9.

    Article  PubMed  CAS  Google Scholar 

  18. Bleesing JJ, Brown MR, Novicio C, Guarraia D, Dale JK, Straus SE, et al. A composite picture of TcR alpha/beta(+) CD4(−)CD8(−) T Cells (alpha/beta-DNTCs) in humans with autoimmune lymphoproliferative syndrome. Clin Immunol. 2002;104(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  19. Bleesing JJ, Brown MR, Dale JK, Straus SE, Lenardo MJ, Puck JM, et al. TcR-alpha/beta(+) CD4(−)CD8(−) T cells in humans with the autoimmune lymphoproliferative syndrome express a novel CD45 isoform that is analogous to murine B220 and represents a marker of altered O-glycan biosynthesis. Clin Immunol. 2001;100(3):314–24.

    Article  PubMed  CAS  Google Scholar 

  20. Prabhakar M, Lenardo MJ. Human genetic approaches to diseases of lymphocyte activation. Immunol Res. 2009;43(1–3):8–14.

    Article  PubMed  Google Scholar 

  21. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–46.

    Article  PubMed  CAS  Google Scholar 

  22. Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, et al. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest. 2009;119(10):2976–89.

    PubMed  CAS  Google Scholar 

  23. Martin D, Lenardo M. Morphological, biochemical, and flow cytometric assays of apoptosis. Curr Protoc Immunol. 1998:pp.3.17.1–3..39.

Download references

Acknowledgements

We thank the patients and healthy blood donors. We also thank Josh Milner for use of his LSRFortessa. We thank Julie Niemela for assistance in mutation nomenclature. We also thank Claire Liu for assay name recommendations, and we thank Helen Su and Chryssa Kanellopoulou for critical reading of the manuscript. This research was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lenardo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, B., Ramaswamy, M., Davis, J. et al. A Rapid Ex Vivo Clinical Diagnostic Assay for Fas Receptor-Induced T Lymphocyte Apoptosis. J Clin Immunol 33, 479–488 (2013). https://doi.org/10.1007/s10875-012-9811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9811-z

Keywords

Navigation