Skip to main content
Log in

Antibody Response Against Betaferon® in Immune Tolerant Mice: Involvement of Marginal Zone B-cells and CD4+ T-cells and Apparent Lack of Immunological Memory

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested.

Methods

Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®.

Results

Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice.

Conclusion

The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Subramanyam M. Immunogenicity of biotherapeutics-an overview. J Immunotoxicol. 2006;3:151–6.

    Article  PubMed  CAS  Google Scholar 

  2. Schellekens H. How to predict and prevent the immunogenicity of therapeutic proteins. Biotechnol Annu Rev. 2008;14:191–202.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen BA, Oger J, Gagnon A, Giovannoni G. The implications of immunogenicity for protein-based multiple sclerosis therapies. J Neurol Sci. 2008;275:7–17.

    Article  PubMed  CAS  Google Scholar 

  4. McKoy JM, Stonecash RE, Cournoyer D, Rossert J, Nissenson AR, Raisch DW, Casadevall N, Bennett CL. Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion. 2008;48:1754–62.

    Article  PubMed  Google Scholar 

  5. Bartelds GM, Krieckaert CLM, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JWR, Dijkmans BAC, Aarden L, Wolbink GJ. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA. 2011;305:1460–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sauerborn M, Brinks V, Jiskoot W, Schellekens H. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31:53–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hermeling S, Aranha L, Damen JMA, Slijper M, Schellekens H, Crommelin DJA, Jiskoot W. Structural characterization and immunogenicity in wild-type and immune tolerant mice of degraded recombinant human interferon alpha2b. Pharm Res. 2005;22:1997–2006.

    Article  PubMed  CAS  Google Scholar 

  8. van Beers MMC, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W. Aggregated recombinant human interferon Beta induces antibodies but no memory in immune-tolerant transgenic mice. Pharm Res. 2010;27:1812–24.

    Article  PubMed  Google Scholar 

  9. van Beers MMC, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W. Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res. 2011;28:2393–402.

    Article  PubMed  Google Scholar 

  10. Runkel L, Meier W, Pepinsky RB, Karpusas M, Whitty A, Kimball K, Brickelmaier M, Muldowney C, Jones W, Goelz SE. Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res. 1998;15:641–9.

    Article  PubMed  CAS  Google Scholar 

  11. Aarskog NK, Marøy T, Myhr K-M, Vedeler CA. Antibodies against interferon-beta in multiple sclerosis. J Neuroimmunol. 2009;212:148–50.

    Article  PubMed  Google Scholar 

  12. Perini P, Facchinetti A, Bulian P, Massaro AR, Pascalis DD, Bertolotto A, Biasi G, Gallo P. Interferon-beta (INF-beta) antibodies in interferon-beta1a- and interferon-beta1b-treated multiple sclerosis patients. Prevalence, kinetics, cross-reactivity, and factors enhancing interferon-beta immunogenicity in vivo. Eur Cytokine Netw. 2001;12:56–61.

    PubMed  CAS  Google Scholar 

  13. Ahlers JD, Belyakov IM. Molecular pathways regulating CD4(+) T cell differentiation, anergy and memory with implications for vaccines. Trends Mol Med. 2010;16:478–91.

    Article  PubMed  CAS  Google Scholar 

  14. Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000;176:154–70.

    Article  PubMed  CAS  Google Scholar 

  15. van Beers MMC, Sauerborn M, Gilli F, Hermeling S, Brinks V, Schellekens H, Jiskoot W. Hybrid transgenic immune tolerant mouse model for assessing the breaking of B cell tolerance by human interferon beta. J Immunol Methods. 2010;352:32–7.

    Article  PubMed  Google Scholar 

  16. Hermeling S, Jiskoot W, Crommelin D, Bornaes C, Schellekens H. Development of a transgenic mouse model immune tolerant for human interferon Beta. Pharm Res. 2005;22:847–51.

    Article  PubMed  CAS  Google Scholar 

  17. Scheikl T, Reis B, Pfeffer K, Holzmann B, Beer S. Reduced notch activity is associated with an impaired marginal zone B cell development and function in Sly1 mutant mice. Mol Immunol. 2009;46:969–77.

    Article  PubMed  CAS  Google Scholar 

  18. Belperron AA, Dailey CM, Booth CJ, Bockenstedt LK. Marginal zone B-cell depletion impairs murine host defense against Borrelia burgdorferi infection. Infect Immun. 2007;75:3354–60.

    Article  PubMed  CAS  Google Scholar 

  19. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.

    Article  PubMed  CAS  Google Scholar 

  20. Cerottini JC, MacDonald HR. The cellular basis of T-cell memory. Annu Rev Immunol. 1989;7:77–89.

    Article  PubMed  CAS  Google Scholar 

  21. Sprent J. T and B memory cells. Cell. 1994;76:315–22.

    Article  PubMed  CAS  Google Scholar 

  22. Mirshahidi S, Huang CT, Sadegh-Nasseri S. Anergy in peripheral memory CD4(+) T cells induced by low avidity engagement of T cell receptor. J Exp Med. 2001;194:719–31.

    Article  PubMed  CAS  Google Scholar 

  23. Koch G, Lok BD, Benner R. Antibody formation in mouse bone marrow during secondary type responses to various thymus-independent antigens. Immunobiology. 1982;163:484–96.

    Article  PubMed  CAS  Google Scholar 

  24. Sverremark E, Fernandez C. Unresponsiveness following immunization with the T-cell-independent antigen dextran B512. Can it be abrogated? Immunology. 1998;95:402–8.

    Article  PubMed  CAS  Google Scholar 

  25. Martin F, Kearney JF. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol Rev. 2000;175:70–9.

    Article  PubMed  CAS  Google Scholar 

  26. Zandvoort A, Timens W. The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol. 2002;130:4–11.

    Article  PubMed  CAS  Google Scholar 

  27. Haniuda K, Nojima T, Ohyama K, Kitamura D. Tolerance induction of IgG + memory B cells by T cell-independent type II antigens. J Immunol. 2011;186:5620–8.

    Article  PubMed  CAS  Google Scholar 

  28. Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–92.

    Article  PubMed  CAS  Google Scholar 

  29. Letvin NL, Benacerraf B, Germain RN. B-lymphocyte responses to trinitrophenyl-conjugated Ficoll: requirement for T lymphocytes and Ia-bearing adherent cells. Proc Natl Acad Sci USA. 1981;78:5113–7.

    Article  PubMed  CAS  Google Scholar 

  30. Nordin AA, Schreier MH. T cell control of the antibody response to the T-independent antigen. DAGG-Ficoll. J Immunol. 1982;129:557–62.

    PubMed  CAS  Google Scholar 

  31. Mongini PK, Stein KE, Paul WE. T cell regulation of IgG subclass antibody production in response to T-independent antigens. J Exp Med. 1981;153:1–12.

    Article  PubMed  CAS  Google Scholar 

  32. De Groot AS, Martin W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol. 2009;131:189–201.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the European Community under its 6th Framework (project NABINMS, contract number 018926). The authors would like to thank Darren Baker and Susan Goelz from Biogen Idec Inc for kindly supplying bulk recombinant human interferon beta 1a.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Brinks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerborn, M., van Beers, M.M.C., Jiskoot, W. et al. Antibody Response Against Betaferon® in Immune Tolerant Mice: Involvement of Marginal Zone B-cells and CD4+ T-cells and Apparent Lack of Immunological Memory. J Clin Immunol 33, 255–263 (2013). https://doi.org/10.1007/s10875-012-9783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9783-z

Keywords

Navigation