Grape Seed Proanthocyanidin Extract Attenuates Allergic Inflammation in Murine Models of Asthma

Abstract

Background

Antioxidants have been suggested to alleviate the pathophysiological features of asthma, and grape seed proanthocyanidin extract (GSPE) has been reported to have powerful antioxidant activity.

Purpose

This study was performed to determine whether GSPE has a therapeutic effect on allergic airway inflammation in both acute and chronic murine model of asthma.

Methods

Acute asthma model was generated by intraperitoneal sensitization of ovalbumin (OVA) with alum followed by aerosolized OVA challenges, whereas chronic asthma model was induced by repeated intranasal challenges of OVA with fungal protease twice a week for 8 weeks. GSPE was administered by either intraperitoneal injection or oral gavage before OVA challenges. Airway hyperresponsiveness (AHR) was measured, and airway inflammation was evaluated by bronchoalveolar lavage (BAL) fluid analysis and histopathological examination of lung tissue. Lung tissue levels of various cytokines, chemokines, and growth factors were analyzed by quantitative polymerase chain reaction and ELISA. Glutathione assay was done to measure oxidative burden in lung tissue.

Results

Compared to untreated asthmatic mice, mice treated with GSPE showed significantly reduced AHR, decreased inflammatory cells in the BAL fluid, reduced lung inflammation, and decreased IL-4, IL-5, IL-13, and eotaxin-1 expression in both acute and chronic asthma models. Moreover, airway subepithelial fibrosis was reduced in the lung tissue of GSPE-treated chronic asthmatic mice compared to untreated asthmatic mice. Reduced to oxidized glutathione (GSH/GSSG) ratio was increased after GSPE treatment in acute asthmatic lung tissue.

Conclusion

GSPE effectively suppressed inflammation in both acute and chronic mouse models of asthma, suggesting a potential role of GSPE as a therapeutic agent for asthma.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bateman and Boulet, Global strategy for asthma management and prevention (2010 update), www.ginaasthma.com. 2010.

  2. 2.

    Expert Panel Report 3 (EPR-3). Guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol. 2007;120(5 Suppl):S94–138.

    Google Scholar 

  3. 3.

    Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–43.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bowler RP, Crapo JD. Oxidative stress in airways: is there a role for extracellular superoxide dismutase? Am J Respir Crit Care Med. 2002;166(12 Pt 2):S38–43.

    PubMed  Article  Google Scholar 

  5. 5.

    Henderson WR, et al. A small molecule inhibitor of redox-regulated NF-kappa B and activator protein-1 transcription blocks allergic airway inflammation in a mouse asthma model. J Immunol. 2002;169(9):5294–9.

    PubMed  Google Scholar 

  6. 6.

    Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol. 2003;36(1):95–109.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Rahman I, Yang SR, Biswas SK. Current concepts of redox signaling in the lungs. Antioxid Redox Signal. 2006;8(3–4):681–9.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Fitzpatrick AM, et al. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol. 2009;123(1):146–152.e8.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fitzpatrick AM, et al. Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. J Allergy Clin Immunol. 2009;124(5):990–6.e1–9.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Comhair SA, et al. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med. 2005;172(3):306–13.

    PubMed  Article  Google Scholar 

  11. 11.

    Lasmar L, et al. Adherence rate to inhaled corticosteroids and their impact on asthma control. Allergy. 2009;64(5):784–9.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Rachelefsky G. Inhaled corticosteroids and asthma control in children: assessing impairment and risk. Pediatrics. 2009;123(1):353–66.

    PubMed  Article  Google Scholar 

  13. 13.

    Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol. 2008;8(1):49–56.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Shaheen SO, et al. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax. 2007;62(6):483–90.

    PubMed  Article  Google Scholar 

  15. 15.

    Garcia V, et al. Dietary intake of flavonoids and asthma in adults. Eur Respir J. 2005;26(3):449–52.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Ram FS, Rowe BH, Kaur B. Vitamin C supplementation for asthma. Cochrane Database Syst Rev. 2004;3:CD000993.

    PubMed  Google Scholar 

  17. 17.

    Pearson PJ, et al. Vitamin E supplements in asthma: a parallel group randomised placebo controlled trial. Thorax. 2004;59(8):652–6.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Fogarty A, et al. Oral magnesium and vitamin C supplements in asthma: a parallel group randomized placebo-controlled trial. Clin Exp Allergy. 2003;33(10):1355–9.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Ariga T. The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors. 2004;21(1–4):197–201.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Li BY, et al. Back-regulation of six oxidative stress proteins with grape seed proanthocyanidin extracts in rat diabetic nephropathy. J Cell Biochem. 2008;104(2):668–79.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Guler A, et al. Proanthocyanidin prevents myocardial ischemic injury in adult rats. Med Sci Monit. 2011;17(11):BR326-331.

    PubMed  Google Scholar 

  22. 22.

    Ulusoy S, et al. Anti-apoptotic and anti-oxidant effects of grape seed proanthocyanidin extract in preventing cyclosporine A-induced nephropathy. Nephrol (Carlton). 2012;17(4):372–9.

    Article  CAS  Google Scholar 

  23. 23.

    Mantena SK, Baliga MS, Katiyar SK. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis. 2006;27(8):1682–91.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Han Y. Synergic effect of grape seed extract with amphotericin B against disseminated candidiasis due to Candida albicans. Phytomedicine. 2007;14(11):733–8.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Cho ML, et al. Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis. Immunol Lett. 2009;124(2):102–10.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Henriet JP. Veno-lymphatic insufficiency. 4,729 patients undergoing hormonal and procyanidol oligomer therapy. Phlebologie. 1993;46(2):313–25.

    PubMed  CAS  Google Scholar 

  27. 27.

    Bagchi D, et al. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology. 2000;148(2–3):187–97.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673–751.

    PubMed  CAS  Google Scholar 

  29. 29.

    Xia EQ, et al. Biological activities of polyphenols from grapes. Int J Mol Sci. 2010;11(2):622–46.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Nassiri-Asl M, Hosseinzadeh H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother Res. 2009;23(9):1197–204.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Zhou DY, et al. Grape seed proanthocyanidin extract attenuates airway inflammation and hyperresponsiveness in a murine model of asthma by downregulating inducible nitric oxide synthase. Planta Med. 2011;77(14):1575–81.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kheradmand F, et al. A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J Immunol. 2002;169(10):5904–11.

    PubMed  CAS  Google Scholar 

  33. 33.

    Barrett EG, et al. Cigarette smoke-induced airway hyperresponsiveness is not dependent on elevated immunoglobulin and eosinophilic inflammation in a mouse model of allergic airway disease. Am J Respir Crit Care Med. 2002;165(10):1410–8.

    PubMed  Article  Google Scholar 

  34. 34.

    Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 2010;11(7):577–84.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    D’Amato G, et al. Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol. 2010;20(2):95–102. quiz following 102.

    PubMed  Google Scholar 

  36. 36.

    D’Amato G, et al. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur Respir J. 2002;20(3):763–76.

    PubMed  Article  Google Scholar 

  37. 37.

    Fogarty A, et al. Dietary vitamin E, IgE concentrations, and atopy. Lancet. 2000;356(9241):1573–4.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Grievink L, et al. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax. 1998;53(3):166–71.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Wood LG, et al. Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids. 2000;35(9):967–74.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Rahman I, et al. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med. 1996;154(4 Pt 1):1055–60.

    PubMed  CAS  Google Scholar 

  41. 41.

    Vachier I, et al. Increased oxygen species generation in blood monocytes of asthmatic patients. Am Rev Respir Dis. 1992;146(5 Pt 1):1161–6.

    PubMed  CAS  Google Scholar 

  42. 42.

    Chanez P, et al. Generation of oxygen free radicals from blood eosinophils from asthma patients after stimulation with PAF or phorbol ester. Eur Respir J. 1990;3(9):1002–7.

    PubMed  CAS  Google Scholar 

  43. 43.

    Kelly FJ, et al. Altered lung antioxidant status in patients with mild asthma. Lancet. 1999;354(9177):482–3.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Kharitonov SA, et al. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994;343(8890):133–5.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Nadeem A, et al. Increased oxidative stress and altered levels of antioxidants in asthma. J Allergy Clin Immunol. 2003;111(1):72–8.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Kongerud J, et al. Ascorbic acid is decreased in induced sputum of mild asthmatics. Inhal Toxicol. 2003;15(2):101–9.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Hasselmark L, et al. Lowered platelet glutathione peroxidase activity in patients with intrinsic asthma. Allergy. 1990;45(7):523–7.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Pearson DJ, et al. Selenium status in relation to reduced glutathione peroxidase activity in aspirin-sensitive asthma. Clin Exp Allergy. 1991;21(2):203–8.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Smith LJ, et al. Reduced superoxide dismutase in lung cells of patients with asthma. Free Radic Biol Med. 1997;22(7):1301–7.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Picado C, et al. Dietary micronutrients/antioxidants and their relationship with bronchial asthma severity. Allergy. 2001;56(1):43–9.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Ercan H, et al. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J Allergy Clin Immunol. 2006;118(5):1097–104.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Rusznak C, Devalia JL, Davies RJ. The impact of pollution on allergic disease. Allergy. 1994;49(18 Suppl):21–7.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J. 2000;16(3):534–54.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263(33):17205–8.

    PubMed  CAS  Google Scholar 

  55. 55.

    Yang G, et al. Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine. 2004;28(6):224–32.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Cang CX, Luan B. Expression of basic fibroblast growth factor and nuclear factor-kappaB and the effect of budesonide on their expression in rats with asthma. Zhongguo Dang Dai Er Ke Za Zhi. 2009;11(5):393–6.

    PubMed  CAS  Google Scholar 

  57. 57.

    Lewis CC, et al. Airway fibroblasts exhibit a synthetic phenotype in severe asthma. J Allergy Clin Immunol. 2005;115(3):534–40.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Puddicombe SM, et al. Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J. 2000;14(10):1362–74.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Vignola AM, et al. Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med. 1997;156(2 Pt 1):591–9.

    PubMed  CAS  Google Scholar 

  60. 60.

    Kabuyama Y, et al. Involvement of selenoprotein P in the regulation of redox balance and myofibroblast viability in idiopathic pulmonary fibrosis. Genes Cells. 2007;12(11):1235–44.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Hackett TL. Epithelial-mesenchymal transition in the pathophysiology of airway remodelling in asthma. Curr Opin Allergy Clin Immunol. 2012;12(1):53–9.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Lee T, et al. Smoking, longer disease duration and absence of rhinosinusitis are related to fixed airway obstruction in Koreans with severe asthma: findings from the COREA study. Respir Res. 2011;12:1.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (No. 20090086092) from the National Research Foundation of Korea (NRF) to Y.S.C. and a grant (No.2012-302) from Asan Life and Science Institute to Y.S.C.

Author information

Affiliations

Authors

Corresponding author

Correspondence to You Sook Cho.

Additional information

Taehoon Lee and Hyouk-Soo Kwon equally contributed to this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, T., Kwon, H., Bang, B. et al. Grape Seed Proanthocyanidin Extract Attenuates Allergic Inflammation in Murine Models of Asthma. J Clin Immunol 32, 1292–1304 (2012). https://doi.org/10.1007/s10875-012-9742-8

Download citation

Keywords

  • Proanthocyanidins
  • grape seed extract
  • asthma
  • antioxidants
  • airway remodeling