Skip to main content

Advertisement

Log in

Effects of High-Dose Dexamethasone on Regulating Interleukin-22 Production and Correcting Th1 and Th22 Polarization in Immune Thrombocytopenia

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

T-cell dysregulation and T-cell-related cytokine abnormalities are involved in the pathogenesis of immune thrombocytopenia (ITP). One of our previous studies showed that elevated IL-22 correlated to Th1 and Th22 cells plays an important role in the immunopathogenesis of ITP. In this study, we aimed to investigate the effects of high-dose dexamethasone (HD-DXM) on IL-22 production and on the IL-22-producing T-cell subsets in ITP patients.

Methods

IL-22 plasma levels and the percentages of Th1, Th17, and Th22 cells were determined by enzyme-linked immunosorbent assay and flow cytometry in 25 ITP patients receiving DXM 40 mg/day for 4 consecutive days.

Results

Plasma IL-22 concentrations and the percentages of Th1 and Th22 cells were significantly increased in pre-therapy patients relative to controls (P < 0.05), but the percentage of Th17 cells was not. HD-DXM administration reduced IL-22 production and corrected the imbalance between Th1 and Th22 subsets. IL-22 levels were positively correlated with Th1 and Th22 cells in ITP patients before and after HD-DXM treatment.

Conclusion

These results suggest that HD-DXM may regulate the production of IL-22 in ITP, possibly by correcting Th1 and Th22 polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Deane S, Teuber SS, Gershwin ME. The geoepidemiology of immune thrombocytopenic purpura. Autoimmun Rev. 2010;9(5):A342–9. doi:10.1016/j.autrev.2009.11.020.

    Article  PubMed  Google Scholar 

  2. Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, et al. Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica. 2005;90(7):914–23.

    PubMed  CAS  Google Scholar 

  3. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood. 2004;103(7):2645–7. doi:10.1182/blood-2003-07-2268.

    Article  PubMed  CAS  Google Scholar 

  4. Stasi R, Del Poeta G, Stipa E, Evangelista ML, Trawinska MM, Cooper N, et al. Response to B-cell-depleting therapy with rituximab reverts the abnormalities of T-cell subsets in patients with idiopathic thrombocytopenic purpura. Blood. 2007;110(8):2924–30. doi:10.1182/blood-2007-02-068999.

    Article  PubMed  CAS  Google Scholar 

  5. Zhao C, Li X, Zhang F, Wang L, Peng J, Hou M. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica. 2008;93(9):1428–30. doi:10.3324/haematol.12889.

    PubMed  Google Scholar 

  6. Olsson B, Andersson PO, Jernas M, Jacobsson S, Carlsson B, Carlsson LM, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med. 2003;9(9):1123–4. doi:10.1038/nm921.

    Article  PubMed  CAS  Google Scholar 

  7. Yu J, Heck S, Patel V, Levan J, Yu Y, Bussel JB, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood. 2008;112(4):1325–8. doi:10.1182/blood-2008-01-135335.

    Article  PubMed  CAS  Google Scholar 

  8. Stasi R, Cooper N, Del Poeta G, Stipa E, Laura Evangelista M, Abruzzese E, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood. 2008;112(4):1147–50. doi:10.1182/blood-2007-12-129262.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu X, Ma D, Zhang J, Peng J, Qu X, Ji C, et al. Elevated interleukin-21 correlated to Th17 and Th1 cells in patients with immune thrombocytopenia. J Clin Immunol. 2010;30(2):253–9. doi:10.1007/s10875-009-9353-1.

    Article  PubMed  CAS  Google Scholar 

  10. Shan NN, Zhu XJ, Peng J, Qin P, Zhuang XW, Wang HC, et al. Interleukin 18 and interleukin 18 binding protein in patients with idiopathic thrombocytopenic purpura. Br J Haematol. 2009;144(5):755–61. doi:10.1111/j.1365-2141.2008.07520.x.

    Article  PubMed  CAS  Google Scholar 

  11. Dumoutier L, Louahed J, Renauld J-C. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol. 2000;164(4):1814–9.

    PubMed  CAS  Google Scholar 

  12. Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of interleukin-22. Semin Immunopathol. 2010;32(1):17–31. doi:10.1007/s00281-009-0188-x.

    Article  PubMed  CAS  Google Scholar 

  13. Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36(5):1309–23. doi:10.1002/eji.200535503.

    Article  PubMed  CAS  Google Scholar 

  14. Wolk K, Witte E, Hoffmann U, Doecke WD, Endesfelder S, Asadullah K, et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J Immunol. 2007;178(9):5973–81.

    PubMed  CAS  Google Scholar 

  15. Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum. 2005;52(4):1037–46. doi:10.1002/art.20965.

    Article  PubMed  CAS  Google Scholar 

  16. Cao J, Chen C, Zeng L, Li L, Li X, Li Z, et al. Elevated plasma IL-22 levels correlated with Th1 and Th22 cells in patients with immune thrombocytopenia. Clin Immunol. 2011;141(1):121–3. doi:10.1016/j.clim.2011.05.003.

    PubMed  CAS  Google Scholar 

  17. Rodeghiero F. First-line therapies for immune thrombocytopenic purpura: re-evaluating the need to treat. Eur J Haematol Suppl. 2008;69:19–26. doi:10.1111/j.1600-0609.2007.01000.x.

    Article  PubMed  CAS  Google Scholar 

  18. Cheng Y, Wong RS, Soo YO, Chui CH, Lau FY, Chan NP, et al. Initial treatment of immune thrombocytopenic purpura with high-dose dexamethasone. N Engl J Med. 2003;349(9):831–6. doi:10.1056/NEJMoa030254.

    Article  PubMed  CAS  Google Scholar 

  19. Borst F, Keuning JJ, van Hulsteijn H, Sinnige H, Vreugdenhil G. High-dose dexamethasone as a first- and second-line treatment of idiopathic thrombocytopenic purpura in adults. Ann Hematol. 2004;83(12):764–8. doi:10.1007/s00277-004-0908-1.

    Article  PubMed  CAS  Google Scholar 

  20. Mazzucconi MG, Fazi P, Bernasconi S, De Rossi G, Leone G, Gugliotta L, et al. Therapy with high-dose dexamethasone (HD-DXM) in previously untreated patients affected by idiopathic thrombocytopenic purpura: a GIMEMA experience. Blood. 2007;109(4):1401–7. doi:10.1182/blood-2005-12-015222.

    Article  PubMed  CAS  Google Scholar 

  21. Guo C, Chu X, Shi Y, He W, Li L, Wang L, et al. Correction of Th1-dominant cytokine profiles by high-dose dexamethasone in patients with chronic idiopathic thrombocytopenic purpura. J Clin Immunol. 2007;27(6):557–62. doi:10.1007/s10875-007-9111-1.

    Article  PubMed  CAS  Google Scholar 

  22. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, et al. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood. 2010;115(2):168–86. doi:10.1182/blood-2009-06-225565.

    Article  PubMed  CAS  Google Scholar 

  23. Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood. 2009;113(11):2386–93. doi:10.1182/blood-2008-07-162503.

    Article  PubMed  CAS  Google Scholar 

  24. Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 2009;60(6):1647–56. doi:10.1002/art.24568.

    Article  PubMed  CAS  Google Scholar 

  25. Pan HF, Zhao XF, Yuan H, Zhang WH, Li XP, Wang GH, et al. Decreased serum IL-22 levels in patients with systemic lupus erythematosus. Clin Chim Acta. 2009;401(1–2):179–80. doi:10.1016/j.cca.2008.11.009.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J, Ma D, Zhu X, Qu X, Ji C, Hou M. Elevated profile of Th17, Th1 and Tc1 cells in patients with immune thrombocytopenic purpura. Haematologica. 2009;94(9):1326–9. doi:10.3324/haematol.2009.007823.

    Article  PubMed  CAS  Google Scholar 

  27. Sollazzo D, Trabanelli S, Curti A, Vianelli N, Lemoli RM, Catani L. Circulating CD4+CD161+CD196+ Th17 cells are not increased in immune thrombocytopenia. Haematologica. 2011;96(4):632–4. doi:10.3324/haematol.2010.038638.

    Article  PubMed  Google Scholar 

  28. Guo ZX, Chen ZP, Zheng CL, Jia HR, Ge J, Gu DS, et al. The role of Th17 cells in adult patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol. 2009;82(6):488–9. doi:10.1111/j.1600-0609.2009.01229.x.

    Article  PubMed  CAS  Google Scholar 

  29. Ma D, Zhu X, Zhao P, Zhao C, Li X, Zhu Y, et al. Profile of Th17 cytokines (IL-17, TGF-beta, IL-6) and Th1 cytokine (IFN-gamma) in patients with immune thrombocytopenic purpura. Ann Hematol. 2008;87(11):899–904. doi:10.1007/s00277-008-0535-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Nature Science Foundation (30971281, 81070447, 81000210, and 81100349) and by the Scientific Foundation of Jiangsu Province Health Bureau (H201063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-lin Xu.

Additional information

Jiang Cao and Chong Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Chen, C., Li, L. et al. Effects of High-Dose Dexamethasone on Regulating Interleukin-22 Production and Correcting Th1 and Th22 Polarization in Immune Thrombocytopenia. J Clin Immunol 32, 523–529 (2012). https://doi.org/10.1007/s10875-012-9649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9649-4

Keywords

Navigation