Journal of Clinical Immunology

, Volume 31, Issue 6, pp 1054–1064 | Cite as

Kinetics of Effector Functions and Phenotype of Virus-Specific and γδ T Lymphocytes in Primary Human Cytomegalovirus Infection During Pregnancy

  • Chiara Fornara
  • Daniele Lilleri
  • M. Grazia Revello
  • Milena Furione
  • Maurizio Zavattoni
  • Elisa Lenta
  • Giuseppe Gerna


The T-cell response to human cytomegalovirus (HCMV) primary infection was analyzed in 27 pregnant women during the first year after primary HCMV infection. Pregnant women with remote HCMV infection were enrolled as controls. Interferon-γ-producing T cells were readily detected at levels comparable (CD4+) or higher (CD8+) than controls, whereas the CD4+ and CD8+ lymphoproliferative response as well as IL-2 production was significantly reduced with respect to controls for at least 9 months after infection. In addition, CD45RA re-expression as well as cytotoxic T lymphocyte activity and perforin expression were the major components of the adaptive CD4+ and CD8+ T-cell immune response, while Vδ2 γδ T-cell expansion in response to HCMV infection followed kinetics similar to that of CD8+ T cells. Reduced CD45RA re-expression directly correlated with HCMV transmission to the fetus, thus providing an important prognostic parameter.


T-cell immune response γδ T cells primary HCMV infection cytotoxicity perforin 


  1. 1.
    Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007;17:253–76.PubMedCrossRefGoogle Scholar
  2. 2.
    Meyers JD, Flournoy N, Thomas ED. Risk factors for cytomegalovirus infection after human marrow transplantation. J Infect Dis. 1986;153:478–88.PubMedCrossRefGoogle Scholar
  3. 3.
    Gallant JE, Moore RD, Richman DD, Keruly J, Chaisson RE. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. J Infect Dis. 1992;166:1223–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Meyers JD, Flournoy N, Thomas E. Cytomegalovirus infection and specific cell-mediated immunity after marrow transplant. J Infect Dis. 1980;142:816–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Reusser P, Riddell S, Meyers J, Greenberg P. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78:1373–80.PubMedGoogle Scholar
  6. 6.
    Hayes K, Alford CA, Britt W. Antibody response to virus-encoded proteins after cytomegalovirus mononucleosis. J Infect Dis. 1987;156:615–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Rasmussen L, Matkin C, Spaete R, Pachl C, Merigan TC. Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. J Infect Dis. 1991;164:835–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Barron MA, Gao D, Springer KL, Patterson JA, Brunvand MW, McSweeney PA, et al. Relationship of reconstituted adaptive and innate cytomegalovirus (CMV)-specific immune responses with CMV viremia in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49:1777–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Couzi L, Pitard V, Netzer S, Garrigue I, Lafon ME, Moreau JF, et al. Common features of γδ T cells and CD8+ αβ T cells responding to human cytomegalovirus infection in kidney transplant recipients. J Infect Dis. 2009;200:1415–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Nigro G, Adler SP, La Torre R, Best AM. Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med. 2005;353:1350–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Macagno A, Bernasconi NL, Vanzetta F, Dander E, Sarasini A, Revello MG, et al. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J Virol. 2010;84:1005–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Stagno S, Pass RF, Dworsky ME, Henderson RE, Moore EG, Walton PD, et al. Congenital cytomegalovirus infection: the relative importance of primary and recurrent maternal infection. N Engl J Med. 1982;306:945–49.PubMedCrossRefGoogle Scholar
  13. 13.
    Stagno S, Pass RF, Cloud G, Britt WJ, Henderson RE, Walton PD, et al. Primary cytomegalovirus infection in pregnancy: incidence, transmission to fetus, and clinical outcome. JAMA. 1986;256:1904–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med. 1992;326:663–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Revello MG, Lilleri D, Zavattoni M, Furione M, Genini E, Comolli G, et al. Lymphoproliferative response in primary human cytomegalovirus infection (HCMV) is delayed in HCMV transmitter mothers. J Infect Dis. 2006;193:269–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Lilleri D, Fornara C, Furione M, Zavattoni M, Revello MG, Gerna G. Development of human cytomegalovirus-specific T cell immunity during primary infection of pregnant women and its correlation with virus transmission to the fetus. J Infect Dis. 2007;195:1062–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Lilleri D, Fornara C, Revello MG, Gerna G. Human cytomegalovirus-specific memory CD8+ and CD4+ T cell differentiation after primary infection. J Infect Dis. 2008;198:536–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Salkowitz JR, Sieg SF, Harding CV, Lederman MM. In vitro human memory CD8 T cell expansion in response to cytomegalovirus requires CD4+ T cell help. J Infect Dis. 2004;189:971–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Wills MR, Carmichael AJ, Weekes MP, Mynard K, Okecha G, Hicks R, et al. Human virus-specific CD8+ CTL clones revert from CD45ROhigh to CD45RAhigh in vivo: CD45RAhigh CD8+ T cells comprise both naive and memory cells. J Immunol. 1999;162:7080–7.PubMedGoogle Scholar
  20. 20.
    Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101:4260–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood. 2003;101:2686–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Northfield JW, Loo CP, Barbour JD, Spotts G, Hecht FM, Klenerman P, et al. Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T(EMRA) cells in early infection are linked to control of HIV-1 viremia and predict the subsequent viral load set point. J Virol. 2007;81:5759–65.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim TK, St John LS, Wieder ED, Khalili J, Ma Q, Komanduri KV. Human late memory CD8+ T cells have a distinct cytokine signature characterized by CC chemokine production without IL-2 production. J Immunol. 2009;183:6167–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerna G, Sarasini A, Patrone M, Percivalle E, Fiorina L, Campanini G, et al. Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection. J Gen Virol. 2008;89:853–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Jerome KR, Sloan DD, Aubert M. Measurement of CTL-induced cytotoxicity: the caspase 3 assay. Apoptosis. 2003;8:563–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Jerome KR, Sloan DD, Aubert M. Measuring T-cell-mediated cytotoxicity using antibody to activated caspase 3. Nat Med. 2003;9:4–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Makedonas G, Hutnick N, Haney D, Amick AC, Gardner J, Cosma G, et al. Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8+ T cells. PLoS Pathog. 2010;6:e1000798.PubMedCrossRefGoogle Scholar
  28. 28.
    Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, Brenchley JM, et al. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med. 2006;203:2865–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Déchanet J, Merville P, Lim A, Retière C, Pitard V, Lafarge X, et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J Clin Invest. 1999;103:1437–49.PubMedCrossRefGoogle Scholar
  30. 30.
    Lafarge X, Merville P, Cazin MC, Bergé F, Potaux L, Moreau JF, et al. Cytomegalovirus infection in transplant recipients resolves when circulating γδ T lymphocytes expand, suggesting a protective antiviral role. J Infect Dis. 2001;184:533–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, Merville P, et al. Shared reactivity of Vδ2neg T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med. 2005;201:1567–78.PubMedCrossRefGoogle Scholar
  32. 32.
    Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I, Lafon ME, et al. Long-term expansion of effector/memory Vδ2 γδ T cells is a specific blood signature of CMV infection. Blood. 2008;112:1317–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Lozza L, Lilleri D, Percivalle E, Fornara C, Comolli G, Revello MG, et al. Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. Eur J Immunol. 2005;35:1795–804.PubMedCrossRefGoogle Scholar
  34. 34.
    Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Revello MG, Zavattoni M, Sarasini A, Percivalle E, Simoncini L, Gerna G. Human cytomegalovirus in blood of immunocompetent persons during primary infection: prognostic implications for pregnancy. J Infect Dis. 1998;177:1170–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Revello MG, Gerna G. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev. 2002;15:680–715.PubMedCrossRefGoogle Scholar
  37. 37.
    Revello MG, Sarasini A, Zavattoni M, Baldanti F, Gerna G. Improved prenatal diagnosis of congenital human cytomegalovirus infection by a modified nested polymerase chain reaction. J Med Virol. 1998;56:99–103.PubMedCrossRefGoogle Scholar
  38. 38.
    Revello MG, Zavattoni M, Baldanti F, Sarasini A, Paolucci S, Gerna G. Diagnostic and prognostic value of human cytomegalovirus load and IgM antibody in blood of congenitally infected newborns. J Clin Virol. 1999;14:57–66.PubMedCrossRefGoogle Scholar
  39. 39.
    Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004;78:5535–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204:1405–16.PubMedCrossRefGoogle Scholar
  41. 41.
    Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, Van Rysselberge M, et al. Human cytomegalovirus elicits fetal γδ T cell response in utero. J Exp Med. 2010;207:807–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chiara Fornara
    • 1
    • 2
  • Daniele Lilleri
    • 1
  • M. Grazia Revello
    • 3
  • Milena Furione
    • 4
  • Maurizio Zavattoni
    • 4
  • Elisa Lenta
    • 4
  • Giuseppe Gerna
    • 1
  1. 1.Experimental Research Laboratories, Transplantation AreaFondazione IRCCS Policlinico San MatteoPaviaItaly
  2. 2.Experimental Research Laboratories, Biotechnology AreaFondazione IRCCS Policlinico San MatteoPaviaItaly
  3. 3.Department of Obstetrics and GynaecologyFondazione IRCCS Policlinico San MatteoPaviaItaly
  4. 4.Molecular Virology Unit, Virology and Microbiology ServiceFondazione IRCCS Policlinico San MatteoPaviaItaly

Personalised recommendations