Skip to main content

Advertisement

Log in

Potent Induction of IFN-γ Production from Cord Blood NK Cells by the Stimulation with Single-Stranded RNA

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells play important roles in the innate immunity against viral infections. Although newborn infants are more susceptible to severe and recurrent viral infections than adults, the precise role of NK cells in the innate immunity against viral infections during neonatal period is not known. To clarify the functional characteristics of cord blood (CB) NK cells, we examined the capacity of CB NK cells to produce interferon gamma (IFN-γ) in response to the Toll-like receptor (TLR) ligands. We found that NK cells produced a large amount of IFN-γ by the stimulation with ssRNA, a TLR8 ligand, in the presence of interleukin-2 (IL-2), Interferon alpha (INF-α), and monocytes. Surprisingly, CB NK cells produced higher amount of IFN-γ than adult peripheral blood NK cells in this condition. IL-12 produced from monocytes by the stimulation with ssRNA was indispensable for the production of IFN-γ by NK cells. NK cells in cooperation with other innate immune cells may play more important role during the neonatal period than in adults in the host defense against viral infections by high capacity of IFN-γ production to compensate immature acquired immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TLR:

Toll-like receptor

ssRNA:

Single-stranded RNA

APB:

Adult peripheral blood

CB:

Cord blood

References

  1. Lewis DB, Wilson CB. Developmental immunology and role of host defenses in fetal and neonatal susceptibility to infection. In: Klein JO, Remington JS, Wilson CB, Baker CJ, editors. Infectious diseases of the fetus and newborn infant. 6th ed. Philadelphia: Elsevier Saunders; 2006. p. 25–138.

    Google Scholar 

  2. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7:379–90.

    Article  PubMed  CAS  Google Scholar 

  3. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res. 2003;90:127–56.

    Article  PubMed  CAS  Google Scholar 

  4. Etzioni A, Eidenschenk C, Katz R, et al. Fatal varicella associated with selective natural killer cell deficiency. J Pediatr. 2005;146:423–5.

    Article  PubMed  Google Scholar 

  5. Biron CA. Initial and innate responses to viral infections: pattern setting in immunity or disease. Curr Opin Microbiol. 1999;2:374–81.

    Article  PubMed  CAS  Google Scholar 

  6. Martin-Fontecha A, Thomsen LL, Brett S, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for TH1 priming. Nat Immunol. 2004;5:1260–5.

    Article  PubMed  CAS  Google Scholar 

  7. Hart OM, Athie-Morales V, O’Connor GM, et al. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-γ production. J Immunol. 2005;175:1636–42.

    PubMed  CAS  Google Scholar 

  8. Hornung V, Rothenfusser S, Britsch S, et al. Quantitative expression of Toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol. 2002;168:4531–7.

    PubMed  CAS  Google Scholar 

  9. Sivori S, Falco M, Della Chiesa M, et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci USA. 2004;101:10116–21.

    Article  PubMed  CAS  Google Scholar 

  10. Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-B by Toll-like receptor 3. Nature. 2001;413:732–8.

    Article  PubMed  CAS  Google Scholar 

  11. Takeshita F, Leifer CA, Gursel I, et al. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol. 2001;167:3555–8.

    PubMed  CAS  Google Scholar 

  12. Gorden KB, Gorski KS, Gibson SJ, et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. 2005;174:1259–68.

    PubMed  CAS  Google Scholar 

  13. Welte S, Kuttruff S, Waldhauer I, et al. Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction. Nat Immunol. 2006;7:1334–42.

    Article  PubMed  CAS  Google Scholar 

  14. Dalbeth N, Gundle R, Davies RJ, et al. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol. 2004;173:6418–26.

    PubMed  CAS  Google Scholar 

  15. Hamerman JA, Ogasawara K, Lanier LL. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol. 2004;172:2001–5.

    PubMed  CAS  Google Scholar 

  16. Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17:189–220.

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt KN, Leung B, Kwong M, et al. APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol. 2004;172:138–43.

    PubMed  CAS  Google Scholar 

  18. Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine that inducesIFN-γ production by T cells. Nature (Lond). 1995;378:88–91.

    Article  CAS  Google Scholar 

  19. Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN-γ-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol. 1996;156:4274–9.

    PubMed  CAS  Google Scholar 

  20. Klein JO, Baker CJ, Remington JS, et al. Current concepts of infections of the fetus and newborn infant. In: Klein JO, Remington JS, Wilson CB, Baker CJ, editors. Infectious diseases of the fetus and newborn infant. 6th ed. Philadelphia: Elsevier Saunders; 2006. p. 1–24.

    Google Scholar 

  21. Siegrist CA. Mechanisms underlying adverse reactions to vaccines. J Comp Pathol. 2007;137:S46–50.

    Article  PubMed  CAS  Google Scholar 

  22. Alford CA, Stagno S, Pass RF, et al. Congenital and perinatal cytomegalovirus infections. Rev Infect Dis. 1990;7:S745–53.

    Article  Google Scholar 

  23. Preblud SR, Bregman DJ, Vernon LL. Deaths from varicella in infants. Pediatr Infect Dis J. 1985;4:503–7.

    Article  CAS  Google Scholar 

  24. Ogra PL. Respiratory syncytial virus: the virus, the disease and the immune response. Paediatr Respir Rev. 2004;5:S119–26.

    Article  PubMed  Google Scholar 

  25. Bottino C, Moretta L, Pende D, et al. Learning how to discriminate between friends and enemies, a lesson from natural killer cells. Mol Immunol. 2004;41:569–75.

    Article  PubMed  CAS  Google Scholar 

  26. Biron CA, Nguyen KB, Pien GC. Innate immune responses to LCMV infections: natural killer cells and cytokines. Curr Top Microbiol Immunol. 2002;263:7–27.

    Article  PubMed  CAS  Google Scholar 

  27. Orange JS, Biron CA. An absolute and restricted requirement for IL-12 in natural killer cell IFN-γ production and antiviral defense: studies of natural killer and T cell responses in contrasting viral infections. J Immunol. 1996;156:1138–42.

    PubMed  CAS  Google Scholar 

  28. Byrne P, McGuirk P, Todryk S, et al. Depletion of NK cells results in disseminating lethal infection with Bordetella pertussis associated with a reduction of antigen-specific Th1 and enhancement of Th2, but not Tr1 cells. Eur J Immunol. 2004;34:2579–88.

    Article  PubMed  CAS  Google Scholar 

  29. Bancroft GJ. The role of natural killer cells in innate resistance to infection. Curr Opin Immunol. 1993;5:503–10.

    Article  PubMed  CAS  Google Scholar 

  30. Biron CA, Byron KS, Sullivan JL. Severe herpes virus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320:1731–5.

    Article  PubMed  CAS  Google Scholar 

  31. Becker I, Salaiza N, Aguirre M, et al. Leishmania lipophosphoglycan (LPG) activates NK cells through Toll-like receptor-2. Mol Biochem Parasitol. 2003;130:65–74.

    Article  PubMed  CAS  Google Scholar 

  32. Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen KB, Watford WT, Salomon R, et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science. 2002;297:2063–6.

    Article  PubMed  CAS  Google Scholar 

  34. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol. 2001;19:65–91.

    Article  PubMed  CAS  Google Scholar 

  35. Price DA, Klenerman P, Booth BL, et al. Cytotoxic T lymphocytes, chemokines and antiviral immunity. Immunol Today. 1999;20:212–6.

    Article  PubMed  CAS  Google Scholar 

  36. McCarron M, Reen DJ. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation. J Immunol. 2009;182:55–62.

    PubMed  CAS  Google Scholar 

  37. Levy O, Zarember KA, Roy RM, et al. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J Immunol. 2004;173:4627–34.

    PubMed  CAS  Google Scholar 

  38. Levy O, Suter EE, Miller RL, et al. Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood. 2006;108:1284–90.

    Article  PubMed  CAS  Google Scholar 

  39. Gibson SJ, Lindh JM, Riter TR, et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol. 2002;218:74–86.

    Article  PubMed  CAS  Google Scholar 

  40. Fehniger TA, Shah MH, Turner MJ, et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol. 1999;162:4511–20.

    PubMed  CAS  Google Scholar 

  41. Nomura A, Takada H, Jin CH. Functional analyses of cord blood natural killer cells and T cells: a distinctive interleukin-18 response. Exp Hematol. 2001;29:1169–76.

    Article  PubMed  CAS  Google Scholar 

  42. Satwani P, Ayello J, Ven C, et al. Immaturity of IL-18 gene expression and protein production in cord blood (CB) versus peripheral blood (PB) mononuclear cells and differential effects in natural killer (NK) cell development and function. Br J Haematol. 2005;130:284–92.

    Article  PubMed  CAS  Google Scholar 

  43. Aste-Amezaga M, D’Andrea A, Kubin M, et al. Cooperation of natural killer cell stimulatory factor/interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T and NK cells. Cell Immunol. 1994;156:480–92.

    Article  PubMed  CAS  Google Scholar 

  44. Gerosa F, Gobbi A, Zorzi P, et al. The reciprocal interaction of NK cells with plasmacytoid or myeloiddendritic cells profoundly affects innate resistance functions. J Immunol. 2005;174:727–34.

    PubMed  CAS  Google Scholar 

  45. Draghi M, Pashine A, Sanjanwala B, et al. NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J Immunol. 2007;178:2688–98.

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

No conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Takada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eljaafari, F.M., Takada, H., Tanaka, T. et al. Potent Induction of IFN-γ Production from Cord Blood NK Cells by the Stimulation with Single-Stranded RNA. J Clin Immunol 31, 728–735 (2011). https://doi.org/10.1007/s10875-011-9528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9528-4

Keywords

Navigation