Skip to main content
Log in

The Histone Peptide H471–94 Alone Is More Effective than a Cocktail of Peptide Epitopes in Controlling Lupus: Immunoregulatory Mechanisms

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Tolerance therapy with nucleosomal histone peptides H471–94, H416–39, or H1′22–42 controls disease in lupus-prone SNF1 mice. It would be clinically important to determine whether a cocktail of the above epitopes would be superior. Herein, we found that compared with cocktail peptides, H471–94 monotherapy more effectively delayed nephritis onset, prolonged lifespan, diminished immunoglobulin G autoantibody levels, reduced autoantigen-specific Th1 and Th17 responses and frequency of TFH cells in spleen and the helper ability of autoimmune T cells to B cells, by inducing potent CD8 Treg cells. H471–94 therapy was superior in “tolerance spreading,” suppressing responses to other autoepitopes, nucleosomes, and ribonucleoprotein. We also developed an in vitro assay for therapeutic peptides (potentially in humans), which showed that H471–94, without exogenous transforming growth factor (TGF)-β, was efficient in inducing stable CD4+CD25+Foxp3+ T cells by decreasing interleukin 6 and increasing TGF-β production by dendritic cells that induced ALK5-dependent Smad-3 phosphorylation (TGF-β signal) in target autoimmune CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Treg:

regulatory T cell

LAP:

latency associated peptide

References

  1. Singh RR, Ebling FM, Albuquerque DA, Saxena V, Kumar V, Giannini EH, et al. Induction of autoantibody production is limited in nonautoimmune mice. J Immunol. 2002;169:587–94.

    PubMed  CAS  Google Scholar 

  2. Datta SK, Patel H, Berry D. Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis. J Exp Med. 1987;165:1252–68.

    Article  PubMed  CAS  Google Scholar 

  3. Shivakumar S, Tsokos GC, Datta SK. T cell receptor alpha/beta expressing double-negative (CD4−/CD8−) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J Immunol. 1989;143:103–12.

    PubMed  CAS  Google Scholar 

  4. Kaliyaperumal A, Mohan C, Wu W, Datta SK. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med. 1996;183:2459–69.

    Article  PubMed  CAS  Google Scholar 

  5. Kaliyaperumal A, Michaels MA, Datta SK. Naturally processed chromatin peptides reveal a major autoepitope that primes pathogenic T and B cells of lupus. J Immunol. 2002;168:2530–7.

    PubMed  CAS  Google Scholar 

  6. Lu L, Kaliyaperumal A, Boumpas DT, Datta SK. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest. 1999;104:345–55.

    Article  PubMed  CAS  Google Scholar 

  7. Suen JL, Chuang YH, Tsai BY, Yau PM, Chiang BL. Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum. 2004;50:3250–9.

    Article  PubMed  CAS  Google Scholar 

  8. Fournel S, Neichel S, Dali H, Farci S, Maillere B, Briand JP, et al. CD4+ T cells from (New Zealand Black × New Zealand White)F1 lupus mice and normal mice immunized against apoptotic nucleosomes recognize similar Th cell epitopes in the C terminus of histone H3. J Immunol. 2003;171:636–44.

    PubMed  CAS  Google Scholar 

  9. Kaliyaperumal A, Michaels MA, Datta SK. Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol. 1999;162:5775–83.

    PubMed  CAS  Google Scholar 

  10. Wu HY, Ward FJ, Staines NA. Histone peptide-induced nasal tolerance: suppression of murine lupus. J Immunol. 2002;169:1126–34.

    PubMed  CAS  Google Scholar 

  11. Kang HK, Michaels MA, Berner BR, Datta SK. Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol. 2005;174:3247–55.

    PubMed  CAS  Google Scholar 

  12. Kang HK, Liu M, Datta SK. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells. J Immunol. 2007;178:7849–58.

    PubMed  CAS  Google Scholar 

  13. Bagavant H, Deshmukh US, Wang H, Ly T, Fu SM. Role for nephritogenic T cells in lupus glomerulonephritis: progression to renal failure is accompanied by T cell activation and expansion in regional lymph nodes. J Immunol. 2006;177:8258–65.

    PubMed  CAS  Google Scholar 

  14. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway. J Exp Med. 2010;207:2331–41.

    Article  PubMed  CAS  Google Scholar 

  15. Lu L, Wang J, Zhang F, Chai Y, Brand D, Wang X, et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol. 2010;184:4295–306.

    Article  PubMed  CAS  Google Scholar 

  16. Sainis K, Datta SK. CD4+ T cell lines with selective patterns of autoreactivity as well as CD4− CD8− T helper cell lines augment the production of idiotypes shared by pathogenic anti-DNA autoantibodies in the NZB × SWR model of lupus nephritis. J Immunol. 1988;140:2215–24.

    PubMed  CAS  Google Scholar 

  17. Gavalchin J, Datta SK. The NZB × SWR model of lupus nephritis. II. Autoantibodies deposited in renal lesions show a distinctive and restricted idiotypic diversity. J Immunol. 1987;138:138–48.

    PubMed  CAS  Google Scholar 

  18. Mohan C, Adams S, Stanik V, Datta SK. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. 1993;177:1367–81.

    Article  PubMed  CAS  Google Scholar 

  19. Singh RR, Saxena V, Zang S, Li L, Finkelman FD, Witte DP, et al. Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J Immunol. 2003;170:4818–25.

    PubMed  CAS  Google Scholar 

  20. Schiffer L, Sinha J, Wang X, Huang W, von Gersdorff G, Schiffer M, et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol. 2003;171:489–97.

    PubMed  CAS  Google Scholar 

  21. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, et al. Follicular helper T cells are required for systemic autoimmunity. J Exp Med. 2009;206:561–76.

    Article  PubMed  CAS  Google Scholar 

  22. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325:1006–10.

    Article  PubMed  CAS  Google Scholar 

  23. Zheng SG, Wang J, Horwitz DA. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol. 2008;180:7112–6.

    PubMed  CAS  Google Scholar 

  24. Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future. Arthritis Res Ther. 2008;10:227.

    Article  PubMed  Google Scholar 

  25. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004;29:265–73.

    Article  PubMed  Google Scholar 

  26. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008;9:166–75.

    Article  PubMed  CAS  Google Scholar 

  27. Haas C, Ryffel B, Le Hir M. IFN-gamma receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB × NZW)F1 mice. J Immunol. 1998;160:3713–8.

    PubMed  CAS  Google Scholar 

  28. Balomenos D, Rumold R, Theofilopoulos AN. Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest. 1998;101:364–71.

    Article  PubMed  CAS  Google Scholar 

  29. Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181:8761–6.

    PubMed  CAS  Google Scholar 

  30. Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol. 2009;10:778–85.

    Article  PubMed  CAS  Google Scholar 

  31. Adams S, Leblanc P, Datta SK. Junctional region sequences of T-cell receptor beta-chain genes expressed by pathogenic anti-DNA autoantibody-inducing helper T cells from lupus mice: possible selection by cationic autoantigens. Proc Natl Acad Sci USA. 1991;88:11271–5.

    Article  PubMed  CAS  Google Scholar 

  32. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol. 2007;178:6725–9.

    PubMed  CAS  Google Scholar 

  33. Suneetha PV, Schlaphoff V, Wang C, Stegmann KA, Fytili P, Sarin SK, et al. Effect of peptide pools on effector functions of antigen-specific CD8+ T cells. J Immunol Methods. 2009;342:33–48.

    Article  PubMed  CAS  Google Scholar 

  34. La Cava A, Ebling FM, Hahn BH. Ig-reactive CD4+CD25+ T cells from tolerized (New Zealand Black × New Zealand White)F1 mice suppress in vitro production of antibodies to DNA. J Immunol. 2004;173:3542–8.

    PubMed  Google Scholar 

  35. Sharabi A, Zinger H, Zborowsky M, Sthoeger ZM, Mozes E. A peptide based on the complementarity-determining region 1 of an autoantibody ameliorates lupus by up-regulating CD4 + CD25+ cells and TGF-beta. Proc Natl Acad Sci USA. 2006;103:8810–5.

    Article  PubMed  CAS  Google Scholar 

  36. Singh RP, La Cava A, Hahn BH. pConsensus peptide induces tolerogenic CD8+ T cells in lupus-prone (NZB × NZW)F1 mice by differentially regulating Foxp3 and PD1 molecules. J Immunol. 2008;180:2069–80.

    PubMed  CAS  Google Scholar 

  37. Monneaux F, Parietti V, Briand JP, Muller S. Importance of spliceosomal RNP1 motif for intermolecular T-B cell spreading and tolerance restoration in lupus. Arthritis Res Ther. 2007;9:R111.

    Article  PubMed  Google Scholar 

  38. Shi Y, Kaliyaperumal A, Lu L, Southwood S, Sette A, Michaels MA, et al. Promiscuous presentation and recognition of nucleosomal autoepitopes in lupus: role of autoimmune T cell receptor alpha chain. J Exp Med. 1998;187:367–78.

    Article  PubMed  CAS  Google Scholar 

  39. Datta SK. Major peptide autoepitopes for nucleosome-centered T and B cell interaction in human and murine lupus. Ann NY Acad Sci. 2003;987:79–90.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang L, Bertucci AM, Ramsey-Goldman R, Burt RK, Datta SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol. 2009;183:6346–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R37-AR39157 and RO1-AI41985) and Solovy Arthritis Research Society.

Flow cytometry was performed at the Northwestern University Interdepartmental Immunobiology Flow Cytometry Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syamal K. Datta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HK., Chiang, MY., Liu, M. et al. The Histone Peptide H471–94 Alone Is More Effective than a Cocktail of Peptide Epitopes in Controlling Lupus: Immunoregulatory Mechanisms. J Clin Immunol 31, 379–394 (2011). https://doi.org/10.1007/s10875-010-9504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9504-4

Keywords

Navigation