Journal of Clinical Immunology

, Volume 30, Issue 4, pp 512–519 | Cite as

Sensing Cytoplasmic Danger Signals by the Inflammasome

Article

Abstract

Introduction

The innate immune system depends on molecules collectively known as pattern recognition receptors (PRRs) to survey the extracellular space and the cytoplasm for the presence of dangerous pathogens, pathogen-derived molecules, or even self-derived molecular danger signals, which arise from tissue damage. Absent in melanoma 2 (AIM2) is a newly discovered PRR involved in the sensing of dangerous cytosolic DNA produced by infection with DNA viruses.

Discussion

Remarkably, recent studies in AIM2-deficient mice showed that AIM2 is uniquely involved in sensing infection with the intracellular bacteria Francisella tularensis and subsequently triggering caspase-1-mediated pro-inflammatory cytokine production and macrophage cell death, which activate other components of the immune system and eliminate the infected macrophages. Here, we provide an overview of our current understanding of the role of AIM2 in innate immunity against F. tularensis in particular, and how infection of macrophages with this pathogen is thought to activate AIM2.

Keywords

Inflammasome caspase-1 AIM2 innate immunity inflammation Francisella tularensis 

References

  1. 1.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.CrossRefPubMedGoogle Scholar
  2. 2.
    Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature. 2006;442:39–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9:535–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13:816–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochem J. 2009;420:1–16.CrossRefPubMedGoogle Scholar
  6. 6.
    O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.CrossRefPubMedGoogle Scholar
  7. 7.
    Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol. 2007;7:179–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Moore CB, Ting JP. Regulation of mitochondrial antiviral signaling pathways. Immunity. 2008;28:735–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol. 2010;11:63–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Brodsky IE, Monack D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol. 2009;21:199–207.CrossRefPubMedGoogle Scholar
  13. 13.
    Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–604.CrossRefPubMedGoogle Scholar
  14. 14.
    Hornung V, Latz E. Intracellular DNA recognition. Nat Rev Immunol. 2010;10:123–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323:1057–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10:266–72.CrossRefPubMedGoogle Scholar
  19. 19.
    Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell. 2009;138:576–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol. 2009;10:1065–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A. 2008;105:5477–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448:501–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature. 2008;451:725–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002;277:21119–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Choubey D, Duan X, Dickerson E, Ponomareva L, Panchanathan R, Shen H, et al. Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation and autoimmunity. J Interferon Cytokine Res. 2010; in press. doi:10.1089/jir.2009.0096.
  26. 26.
    Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, et al. A unified model for apical caspase activation. Mol Cell. 2003;11:529–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandes-Alnemri T, Yu J, Juliana C, Solorzano L, Kang K, Wu J, et al. The AIM2 inflammasome is critical for innate immunity against F. tularensis. Nature Immunol. 2010; in press. doi:10.1038/ni.1859.
  28. 28.
    Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452:103–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu E, Nemerow GR. Virus yoga: the role of flexibility in virus host cell recognition. Trends Microbiol. 2004;12:162–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A. 2006;103:14578–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Henry T, Monack DM. Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors. Cell Microbiol. 2007;9:2543–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Henry T, Brotcke A, Weiss DS, Thompson LJ, Monack DM. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J Exp Med. 2007;204:987–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Frankenberg T, Kirschnek S, Hacker H, Hacker G. Phagocytosis-induced apoptosis of macrophages is linked to uptake, killing and degradation of bacteria. Eur J Immunol. 2008;38:204–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Bidani A, Reisner BS, Haque AK, Wen J, Helmer RE, Tuazon DM, et al. Bactericidal activity of alveolar macrophages is suppressed by V-ATPase inhibition. Lung. 2000;178:91–104.CrossRefPubMedGoogle Scholar
  35. 35.
    Clemens DL, Lee BY, Horwitz MA. Francisella tularensis phagosomal escape does not require acidification of the phagosome. Infect Immun. 2009;77:1757–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Santic M, Molmeret M, Klose KE, Jones S, Kwaik YA. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 2005;7:969–79.CrossRefPubMedGoogle Scholar
  37. 37.
    Mariathasan S, Weiss DS, Dixit VM, Monack DM. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med. 2005;202:1043–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Baron GS, Nano FE. MglA and MglB are required for the intramacrophage growth of Francisella novicida. Mol Microbiol. 1998;29:247–59.CrossRefPubMedGoogle Scholar
  39. 39.
    Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol. 2010; in press. doi:10.1038/ni.1864.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.The Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations