Skip to main content
Log in

Treatment of Multiple Sclerosis with Methylprednisolone and Mitoxantrone Modulates the Expression of CXC Chemokine Receptors in PBMC

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Chemokines and their receptors are involved in the development of multiple sclerosis (MS). Methylprednisolone (MP) and mitoxantrone (MTX) are commonly used in the treatment of MS. In this study, we analyzed the expression of chemokine receptors CXCR1, CXCR2, CXCR3, CXCR4, and CXCR5 in peripheral blood mononuclear cells (PBMC) from MS patients before and after treatment with MP or MTX. We observed a significant upregulation of expression of CXCR1 and CXCR2 in untreated MS patients. Treatment of MS with MP stimulated further increase of expression of both receptors. Therapy for MS with MTX resulted in decrease of CXCR2 expression. There was a negative correlation between the expression of CXCR1 and CXCR2 and the cumulative dose of MTX received by patients. These results suggest that CXCR1 and CXCR2 may be involved in MS pathogenesis and that treatment of this disease with MP and MTX may influence expression of those receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Compston A, Sadovnick AD. Epidemiology and genetics of multiple sclerosis. Curr Opin Neurol Neurosurg 1992;5:175–81.

    PubMed  CAS  Google Scholar 

  2. Frohman EM, Racke MK, Raine CS. Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 2006;354:942–55.

    Article  PubMed  CAS  Google Scholar 

  3. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol 2005;23:683–747.

    Article  PubMed  CAS  Google Scholar 

  4. Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003;126:433–7.

    Article  PubMed  CAS  Google Scholar 

  5. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 2002;22:854–62.

    PubMed  CAS  Google Scholar 

  6. Redford EJ, Kapoor R, Smith KJ. N-itric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 1997;120 Pt 12:2149–57.

    Article  PubMed  Google Scholar 

  7. Wilkins A, Chandran S, Compston A. A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 2001;36:48–57.

    Article  PubMed  CAS  Google Scholar 

  8. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354:610–21.

    Article  PubMed  CAS  Google Scholar 

  9. Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001;2:123–8.

    Article  PubMed  CAS  Google Scholar 

  10. White MV, Yoshimura T, Hook W, Kaliner MA, Leonard EJ. Neutrophil attractant/activation protein-1 (NAP-1) causes human basophil histamine release. Immunol Lett 1989;22:151–4.

    Article  PubMed  CAS  Google Scholar 

  11. Warringa RA, Koenderman L, Kok PT, Kreukniet J, Bruijnzeel PL. Modulation and induction of eosinophil chemotaxis by granulocyte-macrophage colony-stimulating factor and interleukin-3. Blood 1991;77:2694–700.

    PubMed  CAS  Google Scholar 

  12. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 1989;243:1464–6.

    Article  PubMed  CAS  Google Scholar 

  13. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995;270:27348–57.

    Article  PubMed  CAS  Google Scholar 

  14. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science 1991;253:1278–80.

    Article  PubMed  CAS  Google Scholar 

  15. Moser B, Barella L, Mattei S, Schumacher C, Boulay F, Colombo MP, et al. Expression of transcripts for two interleukin 8 receptors in human phagocytes, lymphocytes and melanoma cells. Biochem J 1993;294 Pt 1:285–92.

    PubMed  CAS  Google Scholar 

  16. Murphy PM, Tiffany HL. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 1991;253:1280–3.

    Article  PubMed  CAS  Google Scholar 

  17. Unemori EN, Amento EP, Bauer EA, Horuk R. Melanoma growth-stimulatory activity/GRO decreases collagen expression by human fibroblasts. Regulation by C-X-C but not C-C cytokines. J Biol Chem 1993;268:1338–42.

    PubMed  CAS  Google Scholar 

  18. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50:121–7.

    Article  PubMed  CAS  Google Scholar 

  19. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005;58:840–6.

    Article  PubMed  Google Scholar 

  20. Carrithers MD, Visintin I, Kang SJ, Janeway CA Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000;123 Pt 6:1092–101.

    Article  PubMed  Google Scholar 

  21. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992;356:63–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kent SJ, Karlik SJ, Cannon C, Hines DK, Yednock TA, Fritz LC, et al. A monoclonal antibody to alpha 4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol 1995;58:1–10.

    Article  PubMed  CAS  Google Scholar 

  23. Kent SJ, Karlik SJ, Rice GP, Horner HC. A monoclonal antibody to alpha 4-integrin reverses the MR-detectable signs of experimental allergic encephalomyelitis in the guinea pig. J Magn Reson Imaging 1995;5:535–40.

    Article  PubMed  CAS  Google Scholar 

  24. Hulkower K, Brosnan CF, Aquino DA, Cammer W, Kulshrestha S, Guida MP, et al. Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J Immunol 1993;150:2525–33.

    PubMed  CAS  Google Scholar 

  25. Ransohoff RM, Hamilton TA, Tani M, Stoler MH, Shick HE, Major JA, et al. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J 1993;7:592–600.

    PubMed  CAS  Google Scholar 

  26. Godiska R, Chantry D, Dietsch GN, Gray PW. Chemokine expression in murine experimental allergic encephalomyelitis. J Neuroimmunol 1995;58:167–76.

    Article  PubMed  CAS  Google Scholar 

  27. Columba-Cabezas S, Serafini B, Ambrosini E, Aloisi F. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol 2003;13:38–51.

    Article  PubMed  Google Scholar 

  28. Glabinski AR, Tani M, Tuohy VK, Tuthill RJ, Ransohoff RM. Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav Immun 1995;9:315–30.

    Article  PubMed  CAS  Google Scholar 

  29. Glabinski AR, Tuohy VK, Ransohoff RM. Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation 1998;5:166–71.

    Article  PubMed  CAS  Google Scholar 

  30. Glabinski AR, Tani M, Strieter RM, Tuohy VK, Ransohoff RM. Synchronous synthesis of alpha- and beta- chemokines by cells of diverse lineage in the central nervous system of mice with relapses of chronic experimental autoimmune encephalomyelitis. Am J Pathol 1997; 150:617–30.

    Google Scholar 

  31. Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1 alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A 1999;96:6873–8.

    Article  PubMed  CAS  Google Scholar 

  32. Boven LA, Montagne L, Nottet HS, De Groot CJ. Macrophage inflammatory protein-1 alpha (MIP-1 alpha), MIP-1 beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin Exp Immunol 2000;122:257–63.

    Article  PubMed  CAS  Google Scholar 

  33. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 1998;84:238–49.

    Article  PubMed  CAS  Google Scholar 

  34. Bonecchi R, Facchetti F, Dusi S, Luini W, Lissandrini D, Simmelink M, et al. Induction of functional IL-8 receptors by IL-4 and IL-13 in human monocytes. J Immunol 2000;164:3862–9.

    PubMed  CAS  Google Scholar 

  35. Puma C, Danik M, Quirion R, Ramon F, Williams S. The chemokine interleukin-8 acutely reduces Ca(2+) currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J Neurochem 2001;78:960–71.

    Article  PubMed  CAS  Google Scholar 

  36. Danik M, Puma C, Quirion R, Williams S. Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, gamma-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: a single-cell reverse transcription-multiplex polymerase chain reaction study. J Neurosci Res 2003;74:286–95.

    Article  PubMed  CAS  Google Scholar 

  37. Omari KM, John GR, Sealfon SC, Raine CS. CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 2005;128:1003–15.

    Article  PubMed  Google Scholar 

  38. Omari KM, John G, Lango R, Raine CS. Role for CXCR2 and CXCL1 on glia in multiple sclerosis. Glia 2006;53:24–31.

    Article  PubMed  Google Scholar 

  39. Glabinski AR, O’Bryant S, Selmaj K, Ransohoff RM. CXC chemokine receptors expression during chronic relapsing experimental autoimmune encephalomyelitis. Ann N Y Acad Sci 2000;917:135–44.

    Article  PubMed  CAS  Google Scholar 

  40. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 2000;192:1545–52.

    Article  PubMed  CAS  Google Scholar 

  41. Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 2005;106:1924–31.

    Article  PubMed  CAS  Google Scholar 

  42. Lee BP, Chen W, Shi H, Der SD, Forster R, Zhang L. CXCR5/CXCL13 interaction is important for double-negative regulatory T cell homing to cardiac allografts. J Immunol 2006;176:5276–83.

    PubMed  CAS  Google Scholar 

  43. Ansel KM, Heyzer-Williams LJ, Ngo VN, Heyzer-Williams MG, Cyster JG. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 1999;190:1123–34.

    Article  PubMed  CAS  Google Scholar 

  44. Moser B, Ebert L. Lymphocyte traffic control by chemokines: follicular B helper T cells. Immunol Lett 2003;85:105–12.

    Article  PubMed  CAS  Google Scholar 

  45. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 2006;129:200–11.

    Article  PubMed  Google Scholar 

  46. Leussink VI, Jung S, Merschdorf U, Toyka KV, Gold R. High-dose methylprednisolone therapy in multiple sclerosis induces apoptosis in peripheral blood leukocytes. Arch Neurol 2001;58:91–7.

    Article  PubMed  CAS  Google Scholar 

  47. Gayo A, Mozo L, Suarez A, Tunon A, Lahoz C, Gutierrez C. Glucocorticoids increase IL-10 expression in multiple sclerosis patients with acute relapse. J Neuroimmunol 1998;85:122–30.

    Article  PubMed  CAS  Google Scholar 

  48. Gelati M, Corsini E, De Rossi M, Masini L, Bernardi G, Massa G, et al. Methylprednisolone acts on peripheral blood mononuclear cells and endothelium in inhibiting migration phenomena in patients with multiple sclerosis. Arch Neurol 2002;59:774–80.

    Article  PubMed  Google Scholar 

  49. Vanderheyde N, Verhasselt V, Goldman M, Willems F. Inhibition of human dendritic cell functions by methylprednisolone. Transplantation 1999;67:1342–7.

    Article  PubMed  CAS  Google Scholar 

  50. Franciotta D, Martino G, Zardini E, Furlan R, Bergamaschi R, Andreoni L, et al. Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J Neuroimmunol 2001;115:192–8.

    Article  PubMed  CAS  Google Scholar 

  51. Sorensen TL, Sellebjerg F, Jensen CV, Strieter RM, Ransohoff RM. Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis. Eur J Neurol 2001;8:665–72.

    Article  PubMed  CAS  Google Scholar 

  52. Bartosik-Psujek H, Stelmasiak Z. Steroid therapy altered serum levels of CCL2 and CCL5 chemokines in multiple sclerosis patients during relapse. Eur Neurol 2004;52:237–41.

    Article  PubMed  CAS  Google Scholar 

  53. Elovaara I, Kuusisto H, Paalavuo R, Sarkijarvi S, Lehtimaki T, Huhtala H, et al. Effect of high-dose methylprednisolone treatment on CCR5 expression on blood cells in MS exacerbation. Acta Neurol Scand 2006;113:163–6.

    Article  PubMed  CAS  Google Scholar 

  54. Martinez-Caceres EM, Barrau MA, Brieva L, Espejo C, Barbera N, Montalban X. Treatment with methylprednisolone in relapses of multiple sclerosis patients: immunological evidence of immediate and short-term but not long-lasting effects. Clin Exp Immunol 2002;127:165–71.

    Article  PubMed  CAS  Google Scholar 

  55. Lund BT, Ashikian N, Ta HQ, Chakryan Y, Manoukian K, Groshen S, et al. Increased CXCL8 (IL-8) expression in Multiple Sclerosis. J Neuroimmunol 2004;155:161–71.

    Article  PubMed  CAS  Google Scholar 

  56. Bartosik-Psujek H, Belniak E, Mitosek-Szewczyk K, Dobosz B, Stelmasiak Z. Interleukin-8 and RANTES levels in patients with relapsing-remitting multiple sclerosis (RR-MS) treated with cladribine. Acta Neurol Scand 2004;109:390–2.

    Article  PubMed  CAS  Google Scholar 

  57. Rosenberg LS, Carvlin MJ, Krugh TR. The antitumor agent mitoxantrone binds cooperatively to DNA: evidence for heterogeneity in DNA conformation. Biochemistry 1986;25:1002–8.

    Article  PubMed  CAS  Google Scholar 

  58. Lenk H, Muller U, Tanneberger S. Mitoxantrone: mechanism of action, antitumor activity, pharmacokinetics, efficacy in the treatment of solid tumors and lymphomas, and toxicity. Anticancer Res 1987;7:1257–64.

    PubMed  CAS  Google Scholar 

  59. Fidler JM, DeJoy SQ, Gibbons JJ Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. J Immunol 1986;137:727–32.

    PubMed  CAS  Google Scholar 

  60. Fidler JM, DeJoy SQ, Smith FR III, Gibbons JJ Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. II. Nonspecific adherent suppressor cells derived from mitoxantrone-treated mice. J Immunol 1986;136:2747–54.

    PubMed  CAS  Google Scholar 

  61. Levine S, Saltzman A. Regional suppression, therapy after onset and prevention of relapses in experimental allergic encephalomyelitis by mitoxantrone. J Neuroimmunol 1986;13:175–81.

    Article  PubMed  CAS  Google Scholar 

  62. Ridge SC, Sloboda AE, McReynolds RA, Levine S, Oronsky AL, Kerwar SS. Suppression of experimental allergic encephalomyelitis by mitoxantrone. Clin Immunol Immunopathol 1985;35:35–42.

    Article  PubMed  CAS  Google Scholar 

  63. Gbadamosi J, Buhmann C, Tessmer W, Moench A, Haag F, Heesen C. Effects of mitoxantrone on multiple sclerosis patients’ lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur Neurol 2003;49:137–41.

    Article  PubMed  CAS  Google Scholar 

  64. Chan A, Weilbach FX, Toyka KV, Gold R. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol 2005;139:152–8.

    Article  PubMed  CAS  Google Scholar 

  65. Neuhaus O, Wiendl H, Kieseier BC, Archelos JJ, Hemmer B, Stuve O, et al. Multiple sclerosis: mitoxantrone promotes differential effects on immunocompetent cells in vitro. J Neuroimmunol 2005;168:128–37.

    Article  PubMed  CAS  Google Scholar 

  66. Pelfrey CM, Cotleur AC, Zamor N, Lee JC, Fox RJ. Immunological studies of mitoxantrone in primary progressive MS. J Neuroimmunol 2006;175:192–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the following research grants: 15/IV/2005 from the Foundation for Development of Polish Pharmacy and Medicine of POLPHARMA SA and 2P05B 16029 from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Glabinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielecki, B., Mazurek, A., Wolinski, P. et al. Treatment of Multiple Sclerosis with Methylprednisolone and Mitoxantrone Modulates the Expression of CXC Chemokine Receptors in PBMC. J Clin Immunol 28, 122–130 (2008). https://doi.org/10.1007/s10875-007-9142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9142-7

Keywords

Navigation