Skip to main content

Elemental analysis of PM10 in southwest Mexico City and source apportionment using positive matrix factorization

Abstract

The results of a study of the elemental concentrations in PM10 samples collected at a site in southwest Mexico City during 2016 and 2019, are presented. The concentrations of up to 19 elements were measured with X-ray fluorescence (XRF). These analyses were complemented with ion chromatography for eight ionic species (for the samples collected in 2016). The behaviors of the gravimetric mass and elemental concentrations are described for the morning, afternoon, and night-time periods in 2019. The elemental concentrations observed in the PM10 samples did not present significant changes as compared to those published in previous works. It was found that the gravimetric mass concentrations were always below the official standards, except during a contingency period in May 2019. The positive matrix factorization (PMF) receptor model was used to identify contaminating sources and their relative contributions to the concentrations of the detected elements. The soil-related factors were the most abundant contributors, with other components associated to traffic, biomass burning, fuel oil, secondary aerosol, and dust resuspension. The occurrence of episodes in 2019 is explained with the aid of PMF and back-trajectories, while the contingency period is due to other chemical species not detected in PM10 with XRF. A comparison with data collected in 2005 in downtown Mexico City is also carried out, as well as with urban areas in other countries.

This is a preview of subscription content, access via your institution.

Fig. 1

Source: Google Earth®)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Source profiles for 2016 as determined with PMF receptor model

Fig. 14

Source profiles for 2019 as determined with PMF receptor model

Fig. 15

Source profiles for 2005 as determined with PMF receptor model

Fig. 16
Fig. 17

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aguilera-Sammaritano, M.L., Cometto, P.M., Bustos, D.A., Wannaz, E.D.: Monitoring of particulate matter (PM2.5 and PM10) in San Juan city, Argentina, using active samplers and the species Tillandsia capillaris. Sci. Poll. Res. Environ. (2021). https://doi.org/10.1007/s11356-021-13174-4

    Article  Google Scholar 

  • Aldape, F., Flores, M.J., Diaz, R.V., Morales, J.R., Cahill, T.A., Saravia, L.: Seasonal study of the composition of atmospheric aerosols in Mexico City. Int. J. PIXE 1(4), 355–371 (1991a)

    Article  Google Scholar 

  • Aldape, F., Flores, M.J., Diaz, R.V., Miranda, J., Cahill, T.A., Morales, J.R.: Two-year study of elemental composition of atmospheric aerosols in Mexico City. Int. J. PIXE 1(4), 373–388 (1991b)

    Article  Google Scholar 

  • Aldape, F., Flores, M.J., García, R.G., Nelson, J.W.: PIXE analysis of atmospheric aerosols from a simultaneous three site sampling during the autumn of 1993 in Mexico City. Nucl. Instrum. Meth. Phys. Res. B 109–110(1), 502–505 (1996). https://doi.org/10.1016/0168-583X(95)00959-0

    Article  Google Scholar 

  • Aldape, F., Dı́az, R.V., Hernández-Méndez, B.: PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison. Nucl. Instrum. Meth. Phys. Res. B 150(1–4), 445–449 (1999). https://doi.org/10.1016/S0168-583X(98)00904-5

    Article  Google Scholar 

  • Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., Galloo, J.C.: PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 96(4), 612–625 (2010)

    Article  Google Scholar 

  • Angyal, A., Ferenczi, Z., Manousakas, M., Furu, E., Szoboszlai, Z., Török, Z., Papp, E., Szikszai, Z., Kertész, Z.: Source identification of fine and coarse aerosol during smog episodes in Debrecen, Hungary. Air Quality, Atmos. & Health 14(3), 1017–1032 (2021)

    Article  Google Scholar 

  • Barrera, V.A., Miranda, J., Espinosa, A.A., Meinguer, J., Martínez, J.N., Cerón, E., Morales, J.R., Miranda, P.A., Días, J.F.: Contribution of soil, sulfate, and biomass burning sources to the elemental composition of PM10 from Mexico City. Int. J. Environ. Res. 6(3), 597–612 (2012). https://doi.org/10.22059/ijer.2012.530

  • Becker, S., Dailey, L.A., Soukup, J.M., Grambow, S.C., Devlin, R.B., Huang, Y.C.T.: Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ. Health Perspect. 113(8), 1032–1038 (2005). https://doi.org/10.1289/ehp.7996

    Article  Google Scholar 

  • Chow, J.C., Watson, J.G.: Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy Fuels 16(2), 222–260 (2002). https://doi.org/10.1021/ef0101715

    Article  Google Scholar 

  • Chow, J.C., Watson, J.G., Edgerton, S.A., Vega, E.: Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Sci. Tot. Environ. 287(3), 177–201 (2002). https://doi.org/10.1016/S0048-9697(01)00982-2

    Article  Google Scholar 

  • Chu-Van, T., Surawski, N., Ristovski, Z., Yuan, C.S., Stevanovic, S., Rahman, S.A., Hossain, F.M., Rainey, T., Brown, R.J.: The effect of diesel fuel sulphur and vanadium on engine performance and emissions. Fuel 261, 116437 (2020). https://doi.org/10.1016/j.fuel.2019.116437

    Article  Google Scholar 

  • Díaz, R.V., López-Monroy, J., Miranda, J., Espinosa, A.A.: PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City. Nucl. Instrum. Meth. Phys. Res. B 318(1), 135–138 (2014). https://doi.org/10.1016/j.nimb.2013.05.095

    Article  Google Scholar 

  • EPA.: Positive Matrix Factorization (PMF) 5.0 Model. Environmental Protection Agency [online]. https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses. 14/12/2019 (2014)

  • Espinosa, A.A.: Determinación de la composición elemental de aerosoles atmosféricos mediante acelerador de iones en partículas PM10 y PM2.5. Master of Sciences thesis, Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, p. 135. Mexico City, Mexico (2007)

    Google Scholar 

  • Espinosa, A.A., Miranda, J., Hernández, E., Reyes, J., Alarcón, A.L., Torres, M.C., Sosa, R. .: Temporal variation of suspended particles (TSP, PM10, and PM2.5) and chemical composition of PM10 in a site at the coast of the Gulf of Mexico. Air Qual. Atmos. Health 12(11), 1267–1277 (2019). https://doi.org/10.1007/s11869-019-00730-8

  • Espinosa, A.A., Miranda, J., Pineda, J.C.: Evaluation of uncertainty in correlated quantities: application to elemental analysis of atmospheric aerosols. Rev. Mex. Fís. E 56, 134–140 (2010)

    Google Scholar 

  • Espinosa, A.A., Reyes-Herrera, J., Miranda, J., Mercado, F., Veytia, M.A., Cuautle, M., Cruz, J.I.: Development of an X-ray fluorescence spectrometer for environmental science applications. Instrum. Sci. Technol. 40(6), 603–617 (2012). https://doi.org/10.1080/10739149.2012.693560

    Article  Google Scholar 

  • Ezeh, G.C., Obioh, I.B., Asubiojo, O., Abiye, O.E., Onyeuwaoma, N.D.: A study of PM2.5–10 pollution at three functional receptor sites in a sub-Saharan African megacity. Aerosol Sci. Eng. 3(3), 65–74 (2019). https://doi.org/10.1007/s41810-019-00044-3

    Article  Google Scholar 

  • Flores, M.J., Aldape, F.: PIXE study of airborne particulate matter in northern Mexico City. Int. J. PIXE 11(1), 61–67 (2001). https://doi.org/10.1142/S0129083501000098

    Article  Google Scholar 

  • Garas, S.K., Triantafyllou, A.G., Tolis, E.I., Diamantopoulos, Ch.N., Bartzis, J.G.: Positive matrix factorization on elemental concentrations of PM10 samples collected in areas within, proximal and far from mining and power station operations in Greece. Global Nest J. 22(1), 132–142 (2020)

    Google Scholar 

  • Guarneros, M., López-Rivera, C., Gonsebatt, M.E., Alcaraz-Zubeldía, M., Hummel, T., Schriever, V.A., Valdez, V., Hudson, R.: Metal-containing particulate matter and associated reduced olfactory identification ability in children from an area of high atmospheric exposure in Mexico City. Chem. Senses 45(1), 45–58 (2020)

    Article  Google Scholar 

  • Gunchin, G., Manousakas, M., Osan, J., Karydas, A.G., EleftheriadisLodoysambaShagjjamba, K.S.D., Migliori, A., Padilla-Alvarez, R., Streli, C., Darby, I.: Three-year long source apportionment study of airborne particles in Ulaanbaatar using X-ray fluorescence and positive matrix factorization. Aerosol Air Qual. Res. 19(5), 1056–1067 (2019). https://doi.org/10.4209/aaqr.2018.09.0351

    Article  Google Scholar 

  • Hedberg, E., Gidhagen, L., Johansson, C.: Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 39(3), 549–561 (2005). https://doi.org/10.1016/j.atmosenv.2004.11.001

    Article  Google Scholar 

  • Hernández-López, A.E., Miranda, J., Pineda, J.C., Reynoso-Cruces, S.: Analysis with X-ray fluorescence of atmospheric aerosol simples collected south of Mexico City. Proceedings. XVI International seminar on X-ray analysis. Universidad de la Frontera, Chile. 4 to 7 November (2018). https://sarx-jfmf-2018.ufro.cl/wp-content/uploads/Resumen-SARX_JFMF-2018.pdf

  • Hernández-López, A.E., Miranda Martín del Campo, J., Mugica-Álvarez, V., Hernández-Valle, B.L., Mejía-Ponce, L.V., Pineda-Santamaría, J.C., Reynoso-Cruces, S., Mendoza-Flores, J.A., Rozanes-Valenzuela, D.: A study of PM2.5 elemental composition in southwest Mexico city and development of receptor models with positive matrix factorization. Rev. Int. de Contam. Ambient. 37(1), 67–88 (2021).https://doi.org/10.20937/RICA.54066

  • Hulskotte, J.H.J., Denier van der Gon, H.A.C., Visschedijk, A.J.H., Schaap, M.: Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci. Technol. 56(1), 223–231 (2007)

    Article  Google Scholar 

  • IAEA: Quantitative X Ray analysis system, computer manual series no. 21, p. 138. International Atomic Energy Agency. Vienna, Austria (2007)

    Google Scholar 

  • Ihl, T., Bautista, F., Cejudo, R., Delgado, C., Quintana, P., Aguilar, D., Gogichaishvili, A.: Concentration of toxic elements in topsoils of the metropolitan area of Mexico City: a spatial analysis using Ordinary kriging and Indicator kriging. Rev. Int. Contam. Ambie. 31(1), 47–62 (2015)

    Google Scholar 

  • Ivošević, T., Stelcer, E., Orlić, I., Radović, I.B., Cohen, D.: Characterization and source apportionment of fine particulate sources at Rijeka, Croatia from 2013 to 2015. Nucl. Instrum. Meth. Phys. Res. B 371, 376–380 (2016). https://doi.org/10.1016/j.nimb.2015.10.023

    Article  Google Scholar 

  • Jain, S., Sharma, S.K., Vijayan, N., Mandal, T.K.: Investigating the seasonal variability in source contribution to PM2.5 and PM10 using different receptor models during 2013–2016 in Delhi, India. Environ. Sci. Poll. Res. 28(4), 4660–4675 (2021). https://doi.org/10.1007/s11356-020-10645-y

    Article  Google Scholar 

  • Justice, C.O., Giglio, L., Korontzy, S., Owen, J.: The MODIS fire products. Remote Sens. Environ. 83(2), 244–262 (2002). https://doi.org/10.1016/S0034-4257(02)00076-7

    Article  Google Scholar 

  • Kassman, H., Pettersson, J., Steenari, B.M., Åmand, L.E.: Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—injection of ammonium sulphate and co-combustion with peat. Fuel Process. Technol. 105(1), 170–180 (2013)

    Article  Google Scholar 

  • Kertész, Z., Szoboszlai, Z., Angyal, A., Dobos, E., Borbély-Kiss, I.: Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment. Nucl. Instrum. Meth. Phys. Res. B 268(11–12), 1924–1928 (2010). https://doi.org/10.1016/j.nimb.2010.02.103

    Article  Google Scholar 

  • Ladino, L.A., Raga, G.B., Álvarez-Ospina, H., Andino-Enríquez, M.A., Rosas, I., Martínez, L., Salinas, E., Miranda, J., Ramírez-Díaz, Z., Figueroa, B., Chou, C., Bertram, A.K., Quintana, E.T., Maldonado, L.A., García-Reynoso, A., Si, M., Irish, V.E.: Ice-nucleating particles in a coastal tropical site. Atmos. Chem. Phys. 19(9), 6147–6165 (2019). https://doi.org/10.5194/acp-19-6147-2019

    Article  Google Scholar 

  • López, M.L., Ceppi, S., Palancar, G.G., Olcese, L.E., Tirao, G., Toselli, B.M.: Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City. Argentina. Atmos. Environ. 45(31), 5450–5457 (2011). https://doi.org/10.1016/j.atmosenv.2011.07.003

    Article  Google Scholar 

  • Lucarelli, F., Calzolai, G., Chiari, M., Giardi, F., Czelusniak, C., Nava, S.: Hourly elemental composition and source identification by Positive Matrix Factorization (PMF) of fine and coarse particulate matter in the high polluted industrial area of Taranto (Italy). Atmosphere 11(4), 00419 (2020). https://doi.org/10.3390/atmos11040419

    Article  Google Scholar 

  • Luo, L., Zhang, Y.Y., Xiao, H.Y., Xiao, H.W., Zheng, N.J., Zhang, Z.Y., Xie, Y.J., Liu, C.: Spatial distributions and sources of inorganic chlorine in PM2.5 across China in Winter. Atmosphere 10(9), 505 (2019)

    Article  Google Scholar 

  • Maenhaut, W.: PIXE analysis of aluminum in fine atmospheric aerosol particles collected on Nuclepore polycarbonate filter. In: Quantifying uncertainty in nuclear analytical measurements. International Atomic Energy Agency, Vienna, Austria, pp. 63–76. (2004)

  • Manousakas, M., Diapouli, E., Papaefthymiou, H., Migliori, A., Karydas, A.G., Padilla-Alvarez, R., Bogovac, M., Kaiser, R.B., Jaksic, M., Bogdanovic-Radovic, I., Eleftheriadis, K.: Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Meth. Phys. Res. B 349(1), 114–124 (2015). https://doi.org/10.1016/j.nimb.2015.02.037

    Article  Google Scholar 

  • Manousakas, M., Diapouli, E., Papaefthymiou, H., Kantarelou, V., Zarkadas, C., Kalogridis, A.C., Karydas, A., Eleftheriadis, K.: XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-Ray Spectrom. 47(3), 190–200 (2018). https://doi.org/10.1002/xrs.2817

    Article  Google Scholar 

  • Manzano-León, N., Serrano-Lomelín, J., Sánchez, B.N., Quintana-Belmares, R., Vega, E., Vázquez-López, I., Rojas-Bracho, L., López-Villegas, M.T., Vadillo-Ortega, F., De Vizcaya-Ruiz, A., Rosas-Pérez, I.: TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ. Health Perspect. 124(4), 406–412 (2016). https://doi.org/10.1289/ehp.1409287

    Article  Google Scholar 

  • Martínez, T., Lartigue, J., Ávila-Pérez, P., Carapio-Morales, L., Zarazúa, G., Navarrete, M., Tejeda, S., Cabrera, L.: Characterization of particulate matter from the Metropolitan Zone of the Valley of Mexico by scanning electron microscopy and energy dispersive X-ray analysis. J. Radioanal. Nucl. Chem. 276(3), 799–806 (2008). https://doi.org/10.1007/s10967-008-0635-5

    Article  Google Scholar 

  • Martínez-Carrillo, M.Á., Solís, C., Isaac-Olive, K., Andrade, E., Beltrán-Hernández, R.I., Martínez-Reséndiz, G., Ramírez-Reyes, A.C., Rivera, C.A., Lucho-Constantino, C.A.: Atmospheric elemental concentration determined by Particle-Induced X-ray Emission at Tlaxcoapan in central Mexico, and its relation to Tula industrial-corridor emissions. Microchem. J. 94(1), 48–52 (2010). https://doi.org/10.1016/j.microc.2009.08.011

    Article  Google Scholar 

  • Mazzei, F., D’alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., Vecchi, R.: Characterization of particulate matter sources in an urban environment. Sci. Tot. Environ. 401(1–3), 81–89 (2008). https://doi.org/10.1016/j.scitotenv.2008.03.008

    Article  Google Scholar 

  • Mejía-Ponce, L.V., Hernández-López, A.E., Reynoso-Cruces, S., Pineda, J.C., Mendoza-Flores, J.A., Miranda, J.: Improvements to the X-ray Spectrometer at the Aerosol Laboratory, Instituto de Física, UNAM. J. Nucl. Phys. Mater. Sci. Rad. Appl. 6(1), 57–60 (2018). https://doi.org/10.15415/jnp.2018.61009

    Article  Google Scholar 

  • Mejía-Ponce, L.V.: Determinación de la concentración elemental de PM10 en un sitio del suroeste de la ZMVM, con una resolución temporal mejor que 24 h, y desarrollo de modelos de receptor mediante Factorización de Matriz Positiva (PMF). Master of Sciences thesis, Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México Mexico City Mexico 104, (2020)

  • Miranda, J., Morales, J.R., Cahill, T.A., Aldape, F., Flores, M.J.: A study of elemental contents in atmospheric aerosols in Mexico City. Atmósfera 5(2), 95–108 (1992)

    Google Scholar 

  • Miranda, J., Cahill, T.A., Morales, J.R., Aldape, F., Flores, M.J., Díaz, R.V.: Determination of elemental concentrations in atmospheric aerosols in Mexico City using proton induced X-ray emission, proton elastic scattering, and laser absorption. Atmos. Environ. 28(14), 2299–2306 (1994). https://doi.org/10.1016/1352-2310(94)90483-9

    Article  Google Scholar 

  • Miranda, J., Andrade, E., Lopez-Suarez, A., Ledesma, R., Cahill, T.A., Wakabayashi, P.H.: A receptor model for atmospheric aerosols from a southwestern site in Mexico City. Atmos. Environ. 30(20), 3471–3479 (1996). https://doi.org/10.1016/1352-2310(95)00477-7

    Article  Google Scholar 

  • Miranda, J., López-Suárez, A., Paredes-Gutiérrez, R., González, S., De Lucio, O.G., Andrade, E., Morales, J.R., Ávila-Sobarzo, M.J.: A study of atmospheric aerosols from five sites in Mexico City using PIXE. Nucl. Instrum. Meth. Phys. Res. B 136–138(1), 970–974 (1998). https://doi.org/10.1016/S0168-583X(97)00752-0

    Article  Google Scholar 

  • Miranda, J., Crespo, I., Morales, M.A.: Absolute principal component analysis of atmospheric aerosols in Mexico City. Environ. Sci. Poll. Res. 7(1), 14–18 (2000a). https://doi.org/10.1065/espr199910.006

    Article  Google Scholar 

  • Miranda, J.: Analysis of atmospheric aerosols in large urban areas with particle induced X-ray emission. In: Spurny, K.R. (ed.) Aerosol Chemical Processes in the Environment, pp. 405–413. CRC Press, Boca Raton (2000)

    Chapter  Google Scholar 

  • Miranda, J., Barrera, V.A., Espinosa, A.A., Galindo, O.S., Núñez-Orosco, A., Montesinos, R.C., Leal-Castro, A., Meinguer, J.: PIXE analysis of atmospheric aerosols from three sites in Mexico City. Nucl. Instrum. Meth. Phys. Res. B 219–220(1), 157–160 (2004). https://doi.org/10.1016/j.nimb.2004.01.045

    Article  Google Scholar 

  • Miranda, J., Barrera, V.A., Espinosa, A.A., Galindo, O.S., Meinguer, J.: PIXE analysis of atmospheric aerosols in Mexico City. X-Ray Spectrom. 34(4), 315–319 (2005). https://doi.org/10.1002/xrs.823

    Article  Google Scholar 

  • Moffet, R.C., Desyaterik, Y., Hopkins, R.J., Tivanski, A.V., Gilles, M.K., Wang, Y., Mugica, V.: Characterization of aerosols containing Zn, Pb, and Cl from an industrial region of Mexico City. Environ. Sci. Technol. 42(19), 7091–7097 (2008). https://doi.org/10.1021/es7030483

    Article  Google Scholar 

  • Molina, L.T., Madronich, S., Gaffney, J.S., Apel, E., Foy, B.D., Fast, J., Ferrare, R., Herdon, S., Jimenez, J.L., Lamb, B., Osornio-Varga, s A.R., Rusell, P., Shauer, J.J., Stevens, P.S., Volkame, r R., & Zavala, M.: An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 10(18), 8697–8760 (2010). https://doi.org/10.5194/acp-10-8697-2010

    Article  Google Scholar 

  • Morton-Bermea, O., Hernández-Álvarez, E., Almorín-Ávila, M.A., Ordóñez-Godínez, S., Bermendi-Orosco, L., Retama, A.: Historical trends of metals concentration in PM10 collected in the Mexico City metropolitan area between 2004 and 2014. Environ. Geochem. Health 43(7), 2781–2798 (2021). https://doi.org/10.1007/s10653-021-00838-w

    Article  Google Scholar 

  • Mugica, V., Maubert, M., Torres, M., Muñoz, J., Rico, E.: Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996–1998. Aerosol Sci. 33(1), 91–102 (2002)

    Article  Google Scholar 

  • Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., Aguilar, J., Alcántara, E.: PM composition and source reconciliation in Mexico City. Atmos. Environ. 43(32), 5068–5074 (2009). https://doi.org/10.1016/j.atmosenv.2009.06.051

    Article  Google Scholar 

  • Olivares-Salazar, S.E., Álvarez-Ospina, H., Aguillón-Vázquez, C., Salcedo, D.: ACS Earth Space Chem. 5(9), 2347–2355 (2021). https://doi.org/10.1021/acsearthspacechem.1c00122

    Article  Google Scholar 

  • Osornio-Vargas, A.R., Bonner, J.C., Alfaro-Moreno, E., Martinez, L., Garcia-Cuéllar, C., Ponce-de-León-Rosales, S., Miranda, J., Rosas-Pérez, I.: Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ. Health. Persp. 111(10), 1289–1293 (2003). https://doi.org/10.1289/ehp.5913

    Article  Google Scholar 

  • Paatero, P., Tapper, U.: Positive matrix factorization – a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5(1), 111–126 (1994). https://doi.org/10.1002/env.3170050203

    Article  Google Scholar 

  • Paredes-Gutiérrez, R., López-Suárez, A., Miranda, J., Andrade, E., González, J.A.: Comparative study of elemental contents in atmospheric aerosols from three sites in Mexico City using PIXE. Rev. Int. De Contam. Ambient. 13(2), 81–85 (1997)

    Google Scholar 

  • Peralta, O., Adams, D., Castro, T., Grutter, M., Varela, A.: Mexico’s University network of atmospheric observatories. Eos 97(4), 8–10 (2016). https://doi.org/10.1029/2016EO045273

    Article  Google Scholar 

  • Querol, X., Pey, J., Minguillón, M.C., Pérez, N., Alastuey, A., Viana, M., Moreno, T., Bernabé, R.M., Blanco, S., Cárdenas, B., Vega, E., Sosa, G., Escalona, S., Ruíz, H., Artiñano, B.: PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmos. Chem. Phys. 8, 111–128 (2008). https://doi.org/10.5194/acp-8-111-2008

    Article  Google Scholar 

  • Quintana, R., Serrano, J., Gómez, V., de Foy, B., Miranda, J., García-Cuéllar, C., Vega, E., Vázquez-López, I., Molina, L.T., Manzano-León, N., Rosas-Pérez, I., Osornio-Vargas, A.R.: The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign. Environ. Poll. 159(12), 3446–3454 (2011). https://doi.org/10.1016/j.envpol.2011.08.022

    Article  Google Scholar 

  • Quintana-Belmares, R., Hernández-Pérez, G., Montiel-Dávalos, A., Gustafsson, Å., Miranda, J., Rosas-Pérez, I., López-Marure, R., Alfaro-Moreno, E.: Urban particulate matter induces the expression of receptors for early and late adhesion molecules on human monocytes. Environ. Res. 167, 283–291 (2018). https://doi.org/10.1016/j.envres.2018.07.033

    Article  Google Scholar 

  • Raga, G.B., Baumgardner, D., Kok, G., Rosas, I.: Some aspects of boundary layer evolution in Mexico City. Atmos. Environ. 33(30), 5013–5021 (1999). https://doi.org/10.1016/S1352-2310(99)00191-0

    Article  Google Scholar 

  • Ramírez-Romero, C., Jaramillo, A., Córdoba, M.F., Raga, G.B., Miranda, J., Álvarez-Ospina, H., Rosas, D., Amador, T., Kim, J.S., Yakobi-Hancock, J., Baumgardner, D., Ladino, L.A.: African dust particles over the western Caribbean-Part I: Impact on air quality over the Yucatán Peninsula. Atmos. Chem. Phys. 21(1), 239–253 (2021). https://doi.org/10.5194/acp-21-239-2021

    Article  Google Scholar 

  • Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M.: Emissions inventory of PM2.5 trace elements across the United States. Environ. Sci. Technol. 43(15), 5790–5796 (2009). https://doi.org/10.5194/10.1021/es802930x

    Article  Google Scholar 

  • Reynoso-Cruces, S.: Muestreo y análisis elemental del aerosol atmosférico presente en un ambiente de trabajo. Bachelor thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, p. 92. Mexico City, Mexico (2020)

    Google Scholar 

  • Rolph, G., Stein, A., Stunder, B.: Real-time environmental applications and display system: READY. Environ. Model. Softw. 95, 210–228 (2017). https://doi.org/10.1016/j.envsoft.2017.06.025

    Article  Google Scholar 

  • Rosas-Pérez, I., Serrano, J., Alfaro-Moreno, E., Baumgardner, D., García-Cuéllar, C., Miranda, J., Raga, G.B., Castillejos, M., Drucker-Colín, R., Osornio-Vargas, A.R.: Relations between PM10 composition and cell toxicity: a multivariate and graphical approach. Chemosphere 67(6), 1218–1228 (2007)

    Article  Google Scholar 

  • Saitoh, K., Sera, K., Perales, J.G., García, F.A., Suzuki, H.: Characterization of fine particle components in Mexico City. Int. J. PIXE 9(03n04), 387–396 (1999). https://doi.org/10.1142/S0129083599000498

    Article  Google Scholar 

  • Saldarriaga-Noreña, H., Hernández-Mena, L., Sánchez-Salinas, E., Ramos-Quintana, F., Ortiz-Hernández, L., Morales-Cueto, R., Alarcón-González, V., Ramírez-Jiménez, S.: Ionic composition in aqueous extracts from PM2. 5 in ambient air at the city of Cuernavaca, México. J. Environ. Prot. 5(13), 1305–1315 (2014). https://doi.org/10.4236/jep.2014.513124

    Article  Google Scholar 

  • Saloman, E.B., Hubbell, J.H., Scofield, J.H.: X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92. Atom. Data Nucl. Data Tables 38(1), 1–197 (1988). https://doi.org/10.1016/0092-640X(88)90044-7

    Article  Google Scholar 

  • Santibáñez-Andrade, M., Chirino, Y.I., González-Ramírez, I., Sánchez-Pérez, Y., García-Cuéllar, C.M.: Deciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarks. Int. J. Molec. Sci. 21(1), 136–150 (2020). https://doi.org/10.3390/ijms21010136

    Article  Google Scholar 

  • SEDEMA.: Inventario de Emisiones de la Ciudad de México 2016. Dirección General de Gestión de la Calidad del Aire, Dirección de Programas de Calidad del Aire e Inventario de Emisiones [online]. http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-2016/mobile/inventario-emisiones-2016.pdf. 05/20/21 (2018)

  • SEDEMA.: Programa para contingencias ambientales atmosféricas en la ZMVM. Secretaría de Medio Ambiente. http://www.aire.cdmx.gob.mx/descargas/ultima-hora/calidad-aire/pcaa/pcaa-historico-contingencias.pdf. 10/01/20 (2019)

  • SEDEMA: Bases de datos de la Red Automática de Monitoreo Atmosférico (RAMA). Secretaría de Medio Ambiente [online]. http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27. 01/20/2020 (2020)

  • Shendrikar, A.D., West, P.W.: Air sampling methods for the determination of selenium. Anal. Chim. Acta 89(2), 403–406 (1977). https://doi.org/10.1016/S0003-2670(01)84740-1

    Article  Google Scholar 

  • Sosa-Echeverría, R., Alarcón-Jiménez, A.L., Torres-Barrera, M.C., Jaimes-Palomera, M., Retama-Hernández, A., Sánchez-Álvarez, P., Granados-Hernández, E., Bravo-Álvarez, H.: Spatial and temporal variation of acid rain in the Mexico City Metropolitan Zone. Atmósfera 32(1), 55–69 (2019). https://doi.org/10.20937/atm.2019.32.01.05

    Article  Google Scholar 

  • SSA: Mexican Official Standard NOM-025-SSA1–2014, Environmental health. Permissible limits for PM10 and PM2.5 suspended particles concentrations in air and evaluation criteria. Mexico City: Secretaría de Salud. Diario Oficial de la Federación (20 de agosto de 2014)

  • Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96(12), 2059–2077 (2015). https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  • Stern, B.R.: Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J. Toxicol. Environ. Health, Part A 73(2–3), 114–127 (2010). https://doi.org/10.1080/15287390903337100

    Article  Google Scholar 

  • Taylor, J.R.: An Introduction to Error Analysis, 2nd edn., p. 327. University Science Books, Sausalito, California, United States (1997)

    Google Scholar 

  • Téllez-Rojo, M.M., Rothenberg, S.J., Texcalac-Sangrador, J.L., Just, A.C., Kloog, I., Rojas-Saunero, L.P., et al.: Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City Metropolitan Area. Environ. Res. 180, 108868 (2020). https://doi.org/10.1016/j.envres.2019.108868

    Article  Google Scholar 

  • Vega, E., Mugica, V., Reyes, E., Sanchez, G., Chow, J.C., Watson, J.G.: Chemical composition of fugitive dust emitters in Mexico City. Atmos. Environ. 35(23), 4033–4039 (2001)

    Article  Google Scholar 

  • Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., González, U., Chow, J., Watson, J.G.: Analysis of PM2.5 and PM10 in the atmosphere of Mexico City during 2000–2002. J. Air Waste Manag. Assoc. 54(7), 786–798 (2004). https://doi.org/10.1080/10473289.2004.10470952

    Article  Google Scholar 

  • Venkataraman, B.V., Sudha, S.: Vanadium toxicity. Asian J. Exp. Sci. 19(2), 127–134 (2005)

    Google Scholar 

  • WHO: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, p. 22. World Health Organization, Geneva, Switzerland (2005)

    Google Scholar 

  • Yap, X.Q., Hashim, M.: A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 13(6), 3517–3526 (2013)

    Article  Google Scholar 

  • Young, T.M., Heerman, D.A., Sirin, G., Ashbaugh, L.L.: Resuspension of soil as a source of airborne lead near industrial facilities and highways. Environ. Sci. Technol. 36(11), 2484–2490 (2002)

    Article  Google Scholar 

  • Zhao, D., Chen, H., Yu, E., Luo, T.: PM2. 5/PM10 ratios in eight economic regions and their relationship with meteorology in China. Adv. Meteorol. 2019, 5295726 (2019). https://doi.org/10.1155/2019/5295726

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of M.C. Torres-Barrera and A.L. Alarcón. Additionally, the support of Dr. T. Castro, Dr. A. Jazcilevich, Dr. C. Solís, and Dr. R. Sosa is appreciated. This work was supported in part by DGAPA-UNAM, under grants IN-102615 and IN-101719, as well as CONACyT 253051. AEHL, LVMP, SRC and JAMF recognize the support of CONACyT through scholarships. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (https://www.ready.noaa.gov) used in this publication. Additionally, the use of imagery from the NASA FIRMS application (http://firms.modaps.eosdis.nasa.gov/) operated by the NASA/Goddard Space Flight Center Earth Science Data and Information System (ESDIS) project is recognized.

Funding

This work was supported in part by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, under grants IN-102615 and IN-101719, as well as Consejo Nacional de Ciencia y Tecnología under grant 253051. AEHL, LVMP, SRC and JAMF recognize the support of CONACyT through scholarships.

Author information

Authors and Affiliations

Authors

Contributions

LVMP and AEHL participated in the design of the campaign, collected and analyzed samples, assisted in the receptor model application, read and corrected the manuscript; JM designed the study, participated in the design of the campaign, analyzed samples, assisted in the receptor model application, and wrote the first version of the manuscript; SRC, JAMF, and JCP collected and analyzed samples; AAE performed the 2005 study, assisted in the receptor model application, read and corrected the manuscript.

Corresponding author

Correspondence to Javier Miranda-Martín-del-Campo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, Fig. 18 presents a graph for the comparison of PM2.5/PM10 ratios obtained during 2016 and 2019 at the southwest site with the 2005 ratios collected at the downtown site; Fig. 19 displays a comparison of the Na, Mg, Cl, K, and Ca concentrations measured with XRF and IC for the 2016 samples; Fig. 20 shows the linear dependence between the wind direction and Mg, Ca, Zn, and K elemental concentrations; a plot demonstrating the linear relationship between NH4+ and the sulfate factor during the 2016 campaign is displayed in Fig. 21. Additionally, the back-trajectories obtained with HYSPLIT (Rolph et al. 2017; Stein et al. 2015), for April 29, 2019, are shown in Fig. 22.

The application of ANOVA to the three data sets showed there was no significant difference in the PM2.5/PM10 ratios among the data sets (Fig. 18).

As the concentrations of the ionic species related to Na, Mg, Cl, K, and Ca measured with ion chromatography had mean values equal to those of the concentrations measured with XRF, within experimental uncertainties (Fig. 19), it was more convenient to use the latter values for PMF.

Significant negative linear correlations were found between the concentrations of several elements during the afternoon (Mg, Ca, Zn), and the night (K) periods during 2019, as shown in Fig. 20. This suggests the presence of emitting sources in the directions opposed to wind provenance.

The highly significant correlation between NH4+ and the PMF-obtained sulfate factor, displayed in Fig. 21, supports the identification of this source as secondary aerosol.

Additionally, the backtrajectories shown in Fig. 22 demonstrate the transport of pollutants from the Tula region (with operational thermoelectric power plants and oil refineries located in the zone) and those emitted by biomass burning locations, as determined with the FIRMS database (Justice et al. 2002).

Fig. 18
figure 18

Comparison among the PM2.5/PM10 ratios obtained during 2016 and 2019 in the southwest site and the 2005 ratios obtained in downtown

Fig. 19
figure 19

Comparison between Na, Mg, Cl, K, and Ca elemental concentrations measured with XRF and IC in the 2016 samples

Fig. 20
figure 20

Dependence of Mg, Ca, Zn (afternoon samples) and K (night samples) concentrations with wind direction, for the 2019 campaign

Fig. 21
figure 21

Concentrations of the ionic species NH4+ as a function of the sulfate factor concentrations, as calculated through PMF

Fig. 22
figure 22

Back-trajectories calculated with HYSPLIT (Rolph et al. 2017; Stein et al. 2015) for April 29, 2019, with the UNAM site as the receptor. The red squares represent fire spots located through the FIRMS database (Justice et al. 2002)

Table 6 Mean concentrations of ionic species in PM10, collected at southwest in 2016(µg m-3)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mejía-Ponce, L.V., Hernández-López, A.E., Miranda-Martín-del-Campo, J. et al. Elemental analysis of PM10 in southwest Mexico City and source apportionment using positive matrix factorization. J Atmos Chem (2022). https://doi.org/10.1007/s10874-022-09435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10874-022-09435-2

Keywords

  • PM10
  • Elemental analysis
  • Mexico City
  • X-ray fluorescence
  • Receptor model, PMF