Aguilera-Sammaritano, M.L., Cometto, P.M., Bustos, D.A., Wannaz, E.D.: Monitoring of particulate matter (PM2.5 and PM10) in San Juan city, Argentina, using active samplers and the species Tillandsia capillaris. Sci. Poll. Res. Environ. (2021). https://doi.org/10.1007/s11356-021-13174-4
Article
Google Scholar
Aldape, F., Flores, M.J., Diaz, R.V., Morales, J.R., Cahill, T.A., Saravia, L.: Seasonal study of the composition of atmospheric aerosols in Mexico City. Int. J. PIXE 1(4), 355–371 (1991a)
Article
Google Scholar
Aldape, F., Flores, M.J., Diaz, R.V., Miranda, J., Cahill, T.A., Morales, J.R.: Two-year study of elemental composition of atmospheric aerosols in Mexico City. Int. J. PIXE 1(4), 373–388 (1991b)
Article
Google Scholar
Aldape, F., Flores, M.J., García, R.G., Nelson, J.W.: PIXE analysis of atmospheric aerosols from a simultaneous three site sampling during the autumn of 1993 in Mexico City. Nucl. Instrum. Meth. Phys. Res. B 109–110(1), 502–505 (1996). https://doi.org/10.1016/0168-583X(95)00959-0
Article
Google Scholar
Aldape, F., Dı́az, R.V., Hernández-Méndez, B.: PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison. Nucl. Instrum. Meth. Phys. Res. B 150(1–4), 445–449 (1999). https://doi.org/10.1016/S0168-583X(98)00904-5
Article
Google Scholar
Alleman, L.Y., Lamaison, L., Perdrix, E., Robache, A., Galloo, J.C.: PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmos. Res. 96(4), 612–625 (2010)
Article
Google Scholar
Angyal, A., Ferenczi, Z., Manousakas, M., Furu, E., Szoboszlai, Z., Török, Z., Papp, E., Szikszai, Z., Kertész, Z.: Source identification of fine and coarse aerosol during smog episodes in Debrecen, Hungary. Air Quality, Atmos. & Health 14(3), 1017–1032 (2021)
Article
Google Scholar
Barrera, V.A., Miranda, J., Espinosa, A.A., Meinguer, J., Martínez, J.N., Cerón, E., Morales, J.R., Miranda, P.A., Días, J.F.: Contribution of soil, sulfate, and biomass burning sources to the elemental composition of PM10 from Mexico City. Int. J. Environ. Res. 6(3), 597–612 (2012). https://doi.org/10.22059/ijer.2012.530
Becker, S., Dailey, L.A., Soukup, J.M., Grambow, S.C., Devlin, R.B., Huang, Y.C.T.: Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ. Health Perspect. 113(8), 1032–1038 (2005). https://doi.org/10.1289/ehp.7996
Article
Google Scholar
Chow, J.C., Watson, J.G.: Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy Fuels 16(2), 222–260 (2002). https://doi.org/10.1021/ef0101715
Article
Google Scholar
Chow, J.C., Watson, J.G., Edgerton, S.A., Vega, E.: Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Sci. Tot. Environ. 287(3), 177–201 (2002). https://doi.org/10.1016/S0048-9697(01)00982-2
Article
Google Scholar
Chu-Van, T., Surawski, N., Ristovski, Z., Yuan, C.S., Stevanovic, S., Rahman, S.A., Hossain, F.M., Rainey, T., Brown, R.J.: The effect of diesel fuel sulphur and vanadium on engine performance and emissions. Fuel 261, 116437 (2020). https://doi.org/10.1016/j.fuel.2019.116437
Article
Google Scholar
Díaz, R.V., López-Monroy, J., Miranda, J., Espinosa, A.A.: PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City. Nucl. Instrum. Meth. Phys. Res. B 318(1), 135–138 (2014). https://doi.org/10.1016/j.nimb.2013.05.095
Article
Google Scholar
EPA.: Positive Matrix Factorization (PMF) 5.0 Model. Environmental Protection Agency [online]. https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses. 14/12/2019 (2014)
Espinosa, A.A.: Determinación de la composición elemental de aerosoles atmosféricos mediante acelerador de iones en partículas PM10 y PM2.5. Master of Sciences thesis, Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, p. 135. Mexico City, Mexico (2007)
Google Scholar
Espinosa, A.A., Miranda, J., Hernández, E., Reyes, J., Alarcón, A.L., Torres, M.C., Sosa, R. .: Temporal variation of suspended particles (TSP, PM10, and PM2.5) and chemical composition of PM10 in a site at the coast of the Gulf of Mexico. Air Qual. Atmos. Health 12(11), 1267–1277 (2019). https://doi.org/10.1007/s11869-019-00730-8
Espinosa, A.A., Miranda, J., Pineda, J.C.: Evaluation of uncertainty in correlated quantities: application to elemental analysis of atmospheric aerosols. Rev. Mex. Fís. E 56, 134–140 (2010)
Google Scholar
Espinosa, A.A., Reyes-Herrera, J., Miranda, J., Mercado, F., Veytia, M.A., Cuautle, M., Cruz, J.I.: Development of an X-ray fluorescence spectrometer for environmental science applications. Instrum. Sci. Technol. 40(6), 603–617 (2012). https://doi.org/10.1080/10739149.2012.693560
Article
Google Scholar
Ezeh, G.C., Obioh, I.B., Asubiojo, O., Abiye, O.E., Onyeuwaoma, N.D.: A study of PM2.5–10 pollution at three functional receptor sites in a sub-Saharan African megacity. Aerosol Sci. Eng. 3(3), 65–74 (2019). https://doi.org/10.1007/s41810-019-00044-3
Article
Google Scholar
Flores, M.J., Aldape, F.: PIXE study of airborne particulate matter in northern Mexico City. Int. J. PIXE 11(1), 61–67 (2001). https://doi.org/10.1142/S0129083501000098
Article
Google Scholar
Garas, S.K., Triantafyllou, A.G., Tolis, E.I., Diamantopoulos, Ch.N., Bartzis, J.G.: Positive matrix factorization on elemental concentrations of PM10 samples collected in areas within, proximal and far from mining and power station operations in Greece. Global Nest J. 22(1), 132–142 (2020)
Google Scholar
Guarneros, M., López-Rivera, C., Gonsebatt, M.E., Alcaraz-Zubeldía, M., Hummel, T., Schriever, V.A., Valdez, V., Hudson, R.: Metal-containing particulate matter and associated reduced olfactory identification ability in children from an area of high atmospheric exposure in Mexico City. Chem. Senses 45(1), 45–58 (2020)
Article
Google Scholar
Gunchin, G., Manousakas, M., Osan, J., Karydas, A.G., EleftheriadisLodoysambaShagjjamba, K.S.D., Migliori, A., Padilla-Alvarez, R., Streli, C., Darby, I.: Three-year long source apportionment study of airborne particles in Ulaanbaatar using X-ray fluorescence and positive matrix factorization. Aerosol Air Qual. Res. 19(5), 1056–1067 (2019). https://doi.org/10.4209/aaqr.2018.09.0351
Article
Google Scholar
Hedberg, E., Gidhagen, L., Johansson, C.: Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos. Environ. 39(3), 549–561 (2005). https://doi.org/10.1016/j.atmosenv.2004.11.001
Article
Google Scholar
Hernández-López, A.E., Miranda, J., Pineda, J.C., Reynoso-Cruces, S.: Analysis with X-ray fluorescence of atmospheric aerosol simples collected south of Mexico City. Proceedings. XVI International seminar on X-ray analysis. Universidad de la Frontera, Chile. 4 to 7 November (2018). https://sarx-jfmf-2018.ufro.cl/wp-content/uploads/Resumen-SARX_JFMF-2018.pdf
Hernández-López, A.E., Miranda Martín del Campo, J., Mugica-Álvarez, V., Hernández-Valle, B.L., Mejía-Ponce, L.V., Pineda-Santamaría, J.C., Reynoso-Cruces, S., Mendoza-Flores, J.A., Rozanes-Valenzuela, D.: A study of PM2.5 elemental composition in southwest Mexico city and development of receptor models with positive matrix factorization. Rev. Int. de Contam. Ambient. 37(1), 67–88 (2021).https://doi.org/10.20937/RICA.54066
Hulskotte, J.H.J., Denier van der Gon, H.A.C., Visschedijk, A.J.H., Schaap, M.: Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci. Technol. 56(1), 223–231 (2007)
Article
Google Scholar
IAEA: Quantitative X Ray analysis system, computer manual series no. 21, p. 138. International Atomic Energy Agency. Vienna, Austria (2007)
Google Scholar
Ihl, T., Bautista, F., Cejudo, R., Delgado, C., Quintana, P., Aguilar, D., Gogichaishvili, A.: Concentration of toxic elements in topsoils of the metropolitan area of Mexico City: a spatial analysis using Ordinary kriging and Indicator kriging. Rev. Int. Contam. Ambie. 31(1), 47–62 (2015)
Google Scholar
Ivošević, T., Stelcer, E., Orlić, I., Radović, I.B., Cohen, D.: Characterization and source apportionment of fine particulate sources at Rijeka, Croatia from 2013 to 2015. Nucl. Instrum. Meth. Phys. Res. B 371, 376–380 (2016). https://doi.org/10.1016/j.nimb.2015.10.023
Article
Google Scholar
Jain, S., Sharma, S.K., Vijayan, N., Mandal, T.K.: Investigating the seasonal variability in source contribution to PM2.5 and PM10 using different receptor models during 2013–2016 in Delhi, India. Environ. Sci. Poll. Res. 28(4), 4660–4675 (2021). https://doi.org/10.1007/s11356-020-10645-y
Article
Google Scholar
Justice, C.O., Giglio, L., Korontzy, S., Owen, J.: The MODIS fire products. Remote Sens. Environ. 83(2), 244–262 (2002). https://doi.org/10.1016/S0034-4257(02)00076-7
Article
Google Scholar
Kassman, H., Pettersson, J., Steenari, B.M., Åmand, L.E.: Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—injection of ammonium sulphate and co-combustion with peat. Fuel Process. Technol. 105(1), 170–180 (2013)
Article
Google Scholar
Kertész, Z., Szoboszlai, Z., Angyal, A., Dobos, E., Borbély-Kiss, I.: Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment. Nucl. Instrum. Meth. Phys. Res. B 268(11–12), 1924–1928 (2010). https://doi.org/10.1016/j.nimb.2010.02.103
Article
Google Scholar
Ladino, L.A., Raga, G.B., Álvarez-Ospina, H., Andino-Enríquez, M.A., Rosas, I., Martínez, L., Salinas, E., Miranda, J., Ramírez-Díaz, Z., Figueroa, B., Chou, C., Bertram, A.K., Quintana, E.T., Maldonado, L.A., García-Reynoso, A., Si, M., Irish, V.E.: Ice-nucleating particles in a coastal tropical site. Atmos. Chem. Phys. 19(9), 6147–6165 (2019). https://doi.org/10.5194/acp-19-6147-2019
Article
Google Scholar
López, M.L., Ceppi, S., Palancar, G.G., Olcese, L.E., Tirao, G., Toselli, B.M.: Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City. Argentina. Atmos. Environ. 45(31), 5450–5457 (2011). https://doi.org/10.1016/j.atmosenv.2011.07.003
Article
Google Scholar
Lucarelli, F., Calzolai, G., Chiari, M., Giardi, F., Czelusniak, C., Nava, S.: Hourly elemental composition and source identification by Positive Matrix Factorization (PMF) of fine and coarse particulate matter in the high polluted industrial area of Taranto (Italy). Atmosphere 11(4), 00419 (2020). https://doi.org/10.3390/atmos11040419
Article
Google Scholar
Luo, L., Zhang, Y.Y., Xiao, H.Y., Xiao, H.W., Zheng, N.J., Zhang, Z.Y., Xie, Y.J., Liu, C.: Spatial distributions and sources of inorganic chlorine in PM2.5 across China in Winter. Atmosphere 10(9), 505 (2019)
Article
Google Scholar
Maenhaut, W.: PIXE analysis of aluminum in fine atmospheric aerosol particles collected on Nuclepore polycarbonate filter. In: Quantifying uncertainty in nuclear analytical measurements. International Atomic Energy Agency, Vienna, Austria, pp. 63–76. (2004)
Manousakas, M., Diapouli, E., Papaefthymiou, H., Migliori, A., Karydas, A.G., Padilla-Alvarez, R., Bogovac, M., Kaiser, R.B., Jaksic, M., Bogdanovic-Radovic, I., Eleftheriadis, K.: Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece. Nucl. Instrum. Meth. Phys. Res. B 349(1), 114–124 (2015). https://doi.org/10.1016/j.nimb.2015.02.037
Article
Google Scholar
Manousakas, M., Diapouli, E., Papaefthymiou, H., Kantarelou, V., Zarkadas, C., Kalogridis, A.C., Karydas, A., Eleftheriadis, K.: XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-Ray Spectrom. 47(3), 190–200 (2018). https://doi.org/10.1002/xrs.2817
Article
Google Scholar
Manzano-León, N., Serrano-Lomelín, J., Sánchez, B.N., Quintana-Belmares, R., Vega, E., Vázquez-López, I., Rojas-Bracho, L., López-Villegas, M.T., Vadillo-Ortega, F., De Vizcaya-Ruiz, A., Rosas-Pérez, I.: TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ. Health Perspect. 124(4), 406–412 (2016). https://doi.org/10.1289/ehp.1409287
Article
Google Scholar
Martínez, T., Lartigue, J., Ávila-Pérez, P., Carapio-Morales, L., Zarazúa, G., Navarrete, M., Tejeda, S., Cabrera, L.: Characterization of particulate matter from the Metropolitan Zone of the Valley of Mexico by scanning electron microscopy and energy dispersive X-ray analysis. J. Radioanal. Nucl. Chem. 276(3), 799–806 (2008). https://doi.org/10.1007/s10967-008-0635-5
Article
Google Scholar
Martínez-Carrillo, M.Á., Solís, C., Isaac-Olive, K., Andrade, E., Beltrán-Hernández, R.I., Martínez-Reséndiz, G., Ramírez-Reyes, A.C., Rivera, C.A., Lucho-Constantino, C.A.: Atmospheric elemental concentration determined by Particle-Induced X-ray Emission at Tlaxcoapan in central Mexico, and its relation to Tula industrial-corridor emissions. Microchem. J. 94(1), 48–52 (2010). https://doi.org/10.1016/j.microc.2009.08.011
Article
Google Scholar
Mazzei, F., D’alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., Vecchi, R.: Characterization of particulate matter sources in an urban environment. Sci. Tot. Environ. 401(1–3), 81–89 (2008). https://doi.org/10.1016/j.scitotenv.2008.03.008
Article
Google Scholar
Mejía-Ponce, L.V., Hernández-López, A.E., Reynoso-Cruces, S., Pineda, J.C., Mendoza-Flores, J.A., Miranda, J.: Improvements to the X-ray Spectrometer at the Aerosol Laboratory, Instituto de Física, UNAM. J. Nucl. Phys. Mater. Sci. Rad. Appl. 6(1), 57–60 (2018). https://doi.org/10.15415/jnp.2018.61009
Article
Google Scholar
Mejía-Ponce, L.V.: Determinación de la concentración elemental de PM10 en un sitio del suroeste de la ZMVM, con una resolución temporal mejor que 24 h, y desarrollo de modelos de receptor mediante Factorización de Matriz Positiva (PMF). Master of Sciences thesis, Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México Mexico City Mexico 104, (2020)
Miranda, J., Morales, J.R., Cahill, T.A., Aldape, F., Flores, M.J.: A study of elemental contents in atmospheric aerosols in Mexico City. Atmósfera 5(2), 95–108 (1992)
Google Scholar
Miranda, J., Cahill, T.A., Morales, J.R., Aldape, F., Flores, M.J., Díaz, R.V.: Determination of elemental concentrations in atmospheric aerosols in Mexico City using proton induced X-ray emission, proton elastic scattering, and laser absorption. Atmos. Environ. 28(14), 2299–2306 (1994). https://doi.org/10.1016/1352-2310(94)90483-9
Article
Google Scholar
Miranda, J., Andrade, E., Lopez-Suarez, A., Ledesma, R., Cahill, T.A., Wakabayashi, P.H.: A receptor model for atmospheric aerosols from a southwestern site in Mexico City. Atmos. Environ. 30(20), 3471–3479 (1996). https://doi.org/10.1016/1352-2310(95)00477-7
Article
Google Scholar
Miranda, J., López-Suárez, A., Paredes-Gutiérrez, R., González, S., De Lucio, O.G., Andrade, E., Morales, J.R., Ávila-Sobarzo, M.J.: A study of atmospheric aerosols from five sites in Mexico City using PIXE. Nucl. Instrum. Meth. Phys. Res. B 136–138(1), 970–974 (1998). https://doi.org/10.1016/S0168-583X(97)00752-0
Article
Google Scholar
Miranda, J., Crespo, I., Morales, M.A.: Absolute principal component analysis of atmospheric aerosols in Mexico City. Environ. Sci. Poll. Res. 7(1), 14–18 (2000a). https://doi.org/10.1065/espr199910.006
Article
Google Scholar
Miranda, J.: Analysis of atmospheric aerosols in large urban areas with particle induced X-ray emission. In: Spurny, K.R. (ed.) Aerosol Chemical Processes in the Environment, pp. 405–413. CRC Press, Boca Raton (2000)
Chapter
Google Scholar
Miranda, J., Barrera, V.A., Espinosa, A.A., Galindo, O.S., Núñez-Orosco, A., Montesinos, R.C., Leal-Castro, A., Meinguer, J.: PIXE analysis of atmospheric aerosols from three sites in Mexico City. Nucl. Instrum. Meth. Phys. Res. B 219–220(1), 157–160 (2004). https://doi.org/10.1016/j.nimb.2004.01.045
Article
Google Scholar
Miranda, J., Barrera, V.A., Espinosa, A.A., Galindo, O.S., Meinguer, J.: PIXE analysis of atmospheric aerosols in Mexico City. X-Ray Spectrom. 34(4), 315–319 (2005). https://doi.org/10.1002/xrs.823
Article
Google Scholar
Moffet, R.C., Desyaterik, Y., Hopkins, R.J., Tivanski, A.V., Gilles, M.K., Wang, Y., Mugica, V.: Characterization of aerosols containing Zn, Pb, and Cl from an industrial region of Mexico City. Environ. Sci. Technol. 42(19), 7091–7097 (2008). https://doi.org/10.1021/es7030483
Article
Google Scholar
Molina, L.T., Madronich, S., Gaffney, J.S., Apel, E., Foy, B.D., Fast, J., Ferrare, R., Herdon, S., Jimenez, J.L., Lamb, B., Osornio-Varga, s A.R., Rusell, P., Shauer, J.J., Stevens, P.S., Volkame, r R., & Zavala, M.: An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 10(18), 8697–8760 (2010). https://doi.org/10.5194/acp-10-8697-2010
Article
Google Scholar
Morton-Bermea, O., Hernández-Álvarez, E., Almorín-Ávila, M.A., Ordóñez-Godínez, S., Bermendi-Orosco, L., Retama, A.: Historical trends of metals concentration in PM10 collected in the Mexico City metropolitan area between 2004 and 2014. Environ. Geochem. Health 43(7), 2781–2798 (2021). https://doi.org/10.1007/s10653-021-00838-w
Article
Google Scholar
Mugica, V., Maubert, M., Torres, M., Muñoz, J., Rico, E.: Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996–1998. Aerosol Sci. 33(1), 91–102 (2002)
Article
Google Scholar
Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., Aguilar, J., Alcántara, E.: PM composition and source reconciliation in Mexico City. Atmos. Environ. 43(32), 5068–5074 (2009). https://doi.org/10.1016/j.atmosenv.2009.06.051
Article
Google Scholar
Olivares-Salazar, S.E., Álvarez-Ospina, H., Aguillón-Vázquez, C., Salcedo, D.: ACS Earth Space Chem. 5(9), 2347–2355 (2021). https://doi.org/10.1021/acsearthspacechem.1c00122
Article
Google Scholar
Osornio-Vargas, A.R., Bonner, J.C., Alfaro-Moreno, E., Martinez, L., Garcia-Cuéllar, C., Ponce-de-León-Rosales, S., Miranda, J., Rosas-Pérez, I.: Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ. Health. Persp. 111(10), 1289–1293 (2003). https://doi.org/10.1289/ehp.5913
Article
Google Scholar
Paatero, P., Tapper, U.: Positive matrix factorization – a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5(1), 111–126 (1994). https://doi.org/10.1002/env.3170050203
Article
Google Scholar
Paredes-Gutiérrez, R., López-Suárez, A., Miranda, J., Andrade, E., González, J.A.: Comparative study of elemental contents in atmospheric aerosols from three sites in Mexico City using PIXE. Rev. Int. De Contam. Ambient. 13(2), 81–85 (1997)
Google Scholar
Peralta, O., Adams, D., Castro, T., Grutter, M., Varela, A.: Mexico’s University network of atmospheric observatories. Eos 97(4), 8–10 (2016). https://doi.org/10.1029/2016EO045273
Article
Google Scholar
Querol, X., Pey, J., Minguillón, M.C., Pérez, N., Alastuey, A., Viana, M., Moreno, T., Bernabé, R.M., Blanco, S., Cárdenas, B., Vega, E., Sosa, G., Escalona, S., Ruíz, H., Artiñano, B.: PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmos. Chem. Phys. 8, 111–128 (2008). https://doi.org/10.5194/acp-8-111-2008
Article
Google Scholar
Quintana, R., Serrano, J., Gómez, V., de Foy, B., Miranda, J., García-Cuéllar, C., Vega, E., Vázquez-López, I., Molina, L.T., Manzano-León, N., Rosas-Pérez, I., Osornio-Vargas, A.R.: The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign. Environ. Poll. 159(12), 3446–3454 (2011). https://doi.org/10.1016/j.envpol.2011.08.022
Article
Google Scholar
Quintana-Belmares, R., Hernández-Pérez, G., Montiel-Dávalos, A., Gustafsson, Å., Miranda, J., Rosas-Pérez, I., López-Marure, R., Alfaro-Moreno, E.: Urban particulate matter induces the expression of receptors for early and late adhesion molecules on human monocytes. Environ. Res. 167, 283–291 (2018). https://doi.org/10.1016/j.envres.2018.07.033
Article
Google Scholar
Raga, G.B., Baumgardner, D., Kok, G., Rosas, I.: Some aspects of boundary layer evolution in Mexico City. Atmos. Environ. 33(30), 5013–5021 (1999). https://doi.org/10.1016/S1352-2310(99)00191-0
Article
Google Scholar
Ramírez-Romero, C., Jaramillo, A., Córdoba, M.F., Raga, G.B., Miranda, J., Álvarez-Ospina, H., Rosas, D., Amador, T., Kim, J.S., Yakobi-Hancock, J., Baumgardner, D., Ladino, L.A.: African dust particles over the western Caribbean-Part I: Impact on air quality over the Yucatán Peninsula. Atmos. Chem. Phys. 21(1), 239–253 (2021). https://doi.org/10.5194/acp-21-239-2021
Article
Google Scholar
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M.: Emissions inventory of PM2.5 trace elements across the United States. Environ. Sci. Technol. 43(15), 5790–5796 (2009). https://doi.org/10.5194/10.1021/es802930x
Article
Google Scholar
Reynoso-Cruces, S.: Muestreo y análisis elemental del aerosol atmosférico presente en un ambiente de trabajo. Bachelor thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, p. 92. Mexico City, Mexico (2020)
Google Scholar
Rolph, G., Stein, A., Stunder, B.: Real-time environmental applications and display system: READY. Environ. Model. Softw. 95, 210–228 (2017). https://doi.org/10.1016/j.envsoft.2017.06.025
Article
Google Scholar
Rosas-Pérez, I., Serrano, J., Alfaro-Moreno, E., Baumgardner, D., García-Cuéllar, C., Miranda, J., Raga, G.B., Castillejos, M., Drucker-Colín, R., Osornio-Vargas, A.R.: Relations between PM10 composition and cell toxicity: a multivariate and graphical approach. Chemosphere 67(6), 1218–1228 (2007)
Article
Google Scholar
Saitoh, K., Sera, K., Perales, J.G., García, F.A., Suzuki, H.: Characterization of fine particle components in Mexico City. Int. J. PIXE 9(03n04), 387–396 (1999). https://doi.org/10.1142/S0129083599000498
Article
Google Scholar
Saldarriaga-Noreña, H., Hernández-Mena, L., Sánchez-Salinas, E., Ramos-Quintana, F., Ortiz-Hernández, L., Morales-Cueto, R., Alarcón-González, V., Ramírez-Jiménez, S.: Ionic composition in aqueous extracts from PM2. 5 in ambient air at the city of Cuernavaca, México. J. Environ. Prot. 5(13), 1305–1315 (2014). https://doi.org/10.4236/jep.2014.513124
Article
Google Scholar
Saloman, E.B., Hubbell, J.H., Scofield, J.H.: X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92. Atom. Data Nucl. Data Tables 38(1), 1–197 (1988). https://doi.org/10.1016/0092-640X(88)90044-7
Article
Google Scholar
Santibáñez-Andrade, M., Chirino, Y.I., González-Ramírez, I., Sánchez-Pérez, Y., García-Cuéllar, C.M.: Deciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarks. Int. J. Molec. Sci. 21(1), 136–150 (2020). https://doi.org/10.3390/ijms21010136
Article
Google Scholar
SEDEMA.: Inventario de Emisiones de la Ciudad de México 2016. Dirección General de Gestión de la Calidad del Aire, Dirección de Programas de Calidad del Aire e Inventario de Emisiones [online]. http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/inventario-emisiones-2016/mobile/inventario-emisiones-2016.pdf. 05/20/21 (2018)
SEDEMA.: Programa para contingencias ambientales atmosféricas en la ZMVM. Secretaría de Medio Ambiente. http://www.aire.cdmx.gob.mx/descargas/ultima-hora/calidad-aire/pcaa/pcaa-historico-contingencias.pdf. 10/01/20 (2019)
SEDEMA: Bases de datos de la Red Automática de Monitoreo Atmosférico (RAMA). Secretaría de Medio Ambiente [online]. http://www.aire.cdmx.gob.mx/default.php?opc=%27aKBh%27. 01/20/2020 (2020)
Shendrikar, A.D., West, P.W.: Air sampling methods for the determination of selenium. Anal. Chim. Acta 89(2), 403–406 (1977). https://doi.org/10.1016/S0003-2670(01)84740-1
Article
Google Scholar
Sosa-Echeverría, R., Alarcón-Jiménez, A.L., Torres-Barrera, M.C., Jaimes-Palomera, M., Retama-Hernández, A., Sánchez-Álvarez, P., Granados-Hernández, E., Bravo-Álvarez, H.: Spatial and temporal variation of acid rain in the Mexico City Metropolitan Zone. Atmósfera 32(1), 55–69 (2019). https://doi.org/10.20937/atm.2019.32.01.05
Article
Google Scholar
SSA: Mexican Official Standard NOM-025-SSA1–2014, Environmental health. Permissible limits for PM10 and PM2.5 suspended particles concentrations in air and evaluation criteria. Mexico City: Secretaría de Salud. Diario Oficial de la Federación (20 de agosto de 2014)
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96(12), 2059–2077 (2015). https://doi.org/10.1175/BAMS-D-14-00110.1
Article
Google Scholar
Stern, B.R.: Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J. Toxicol. Environ. Health, Part A 73(2–3), 114–127 (2010). https://doi.org/10.1080/15287390903337100
Article
Google Scholar
Taylor, J.R.: An Introduction to Error Analysis, 2nd edn., p. 327. University Science Books, Sausalito, California, United States (1997)
Google Scholar
Téllez-Rojo, M.M., Rothenberg, S.J., Texcalac-Sangrador, J.L., Just, A.C., Kloog, I., Rojas-Saunero, L.P., et al.: Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City Metropolitan Area. Environ. Res. 180, 108868 (2020). https://doi.org/10.1016/j.envres.2019.108868
Article
Google Scholar
Vega, E., Mugica, V., Reyes, E., Sanchez, G., Chow, J.C., Watson, J.G.: Chemical composition of fugitive dust emitters in Mexico City. Atmos. Environ. 35(23), 4033–4039 (2001)
Article
Google Scholar
Vega, E., Reyes, E., Ruiz, H., García, J., Sánchez, G., Martínez-Villa, G., González, U., Chow, J., Watson, J.G.: Analysis of PM2.5 and PM10 in the atmosphere of Mexico City during 2000–2002. J. Air Waste Manag. Assoc. 54(7), 786–798 (2004). https://doi.org/10.1080/10473289.2004.10470952
Article
Google Scholar
Venkataraman, B.V., Sudha, S.: Vanadium toxicity. Asian J. Exp. Sci. 19(2), 127–134 (2005)
Google Scholar
WHO: WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, p. 22. World Health Organization, Geneva, Switzerland (2005)
Google Scholar
Yap, X.Q., Hashim, M.: A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos. Chem. Phys. 13(6), 3517–3526 (2013)
Article
Google Scholar
Young, T.M., Heerman, D.A., Sirin, G., Ashbaugh, L.L.: Resuspension of soil as a source of airborne lead near industrial facilities and highways. Environ. Sci. Technol. 36(11), 2484–2490 (2002)
Article
Google Scholar
Zhao, D., Chen, H., Yu, E., Luo, T.: PM2. 5/PM10 ratios in eight economic regions and their relationship with meteorology in China. Adv. Meteorol. 2019, 5295726 (2019). https://doi.org/10.1155/2019/5295726
Article
Google Scholar