Skip to main content
Log in

Wet deposition ethanol concentration at US atmospheric integrated research monitoring network (AIRMoN) sites

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Ethanol concentrations measured in 178 event-based wet deposition samples collected at five Atmospheric Integrated Research Monitoring Network (AIRMoN) sites in the Eastern US between February 2018 to January 2019 ranged from below the detection limit of 19 nM to 4160 nM. The volume weighted average ethanol concentration at each site ranged from 237 nM to 1375 nM. No significant correlation was observed between ethanol and any analytes (NH4+, Cl, SO42−, NO3, Ca2+, Na+, Mg2+, K+, PO43− and H+) at all sites in the study, likely due to differences in atmospheric residence time and emission sources. Significant seasonal variations of ethanol were not observed for any sites, however notably higher concentrations in the winter vs. summer and growing vs. nongrowing seasons suggest photochemical dynamics play a substantial role in seasonal atmospheric concentrations. The AIRMoN concentrations were combined with previous measured ethanol wet deposition data to produce an updated empirical-based global wet deposition ethanol flux of 3.7 ± 1.8 Tg/yr (n = 1051). The carbon isotopic composition of a subset of samples ranged from −25.8 to −15.7‰ with an average of (−20.4 ± 4.0‰, n = 6). Isotope mixing model results indicate an approximately equivalent contribution of biogenic (55.2 ± 14.4%) and anthropogenic (44.8 ± 14.4%) sources of ethanol to the atmosphere over all collections sites. Results provide atmospheric scientists, environmental chemists and policy makers with baseline U.S. atmospheric ethanol concentrations in order to help determine the impact of future ethanol fuel production and to help quantify the wet deposition ethanol sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • 1keydata: List of states by population density. In. https://state.1keydata.com/state-population-density.php (2019)

  • Avery Jr., G.B., Kieber, R.J., Witt, M., Willey, J.D.: Rainwater monocarboxylic and dicarboxylic acid concentrations in southeastern North Carolina, USA, as a function of air-mass back-trajectory. Atmos. Environ. 40(9), 1683–1693 (2006)

    Article  Google Scholar 

  • Bigelow, D.S., Dossett, S.R., Bowersox, V.C.: Instruction Manual: NADP/NTN Site Selection and Installation. NADP Program Office, Illinois State Water Survey (2001)

  • Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.A., Toman, B., Verkouteren, R.M.: New guidelines for δ 13C measurements. Anal. Chem. 78(7), 2439–2441 (2006)

    Article  Google Scholar 

  • Copolovici, L., Niinemets, Ü.: Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ. 33(9), 1582–1594 (2010)

    Google Scholar 

  • Dakhel, N., Pasteris, G., Werner, D., Höhener, P.: Small-volume releases of gasoline in the vadose zone: impact of the additives MTBE and ethanol on groundwater quality. Environ. Sci. Technol. 37(10), 2127–2133 (2003)

    Article  Google Scholar 

  • Felix, J.D., Willey, J.D., Thomas, R.K., Mullaugh, K.M., Avery, G.B., Kieber, R.J., Mead, R.N., Helms, J., Giubbina, F.F., Campos, M.L.A.M., Cala, J.: Removal of atmospheric ethanol by wet deposition. Glob. Biogeochem. Cycles. (2017). https://doi.org/10.1002/2016gb005516

  • Felix, J.D., Thomas, R., Casas, M., Shimizu, M.S., Avery, G.B., Kieber, R.J., Mead, R.N., Lane, C.S., Willey, J.D., Guy, A.: Compound-specific carbon isotopic composition of ethanol in Brazil and US vehicle emissions and wet deposition. Environ. Sci. Technol. 53, 1698–1705 (2019)

    Article  Google Scholar 

  • Feris, K., Mackay, D., Sieyes, N.d., Chakraborty, I., Einarson, M., Hristova, K., Scow, K.: Effect of ethanol on microbial community structure and function during natural attenuation of benzene, toluene, and o-xylene in a sulfate-reducing aquifer. Environ. Sci. Technol. 42(7), 2289–2294 (2008)

    Article  Google Scholar 

  • Fukui, Y., Doskey, P.V.: Air-surface exchange of nonmethane organic compounds at a grassland site: seasonal variations and stressed emissions. J. Geophys. Res. Atmos. 103(D11), 13153–13168 (1998)

    Article  Google Scholar 

  • Giebel, B.M., Swart, P.K., Riemer, D.D.: New insights to the use of ethanol in automotive fuels: a stable isotopic tracer for fossil- and bio-fuel combustion inputs to the atmosphere. Environ. Sci. Technol. 45(15), 6661–6669 (2011). https://doi.org/10.1021/es200982t

    Article  Google Scholar 

  • Giubbina, F.F., Scaramboni, C., De Martinis, B.S., Godoy-Silva, D., Mello, I.N., Nogueira, R.F., Campos, M.L.A.: Temporal variation of ethanol in rainwater from the sugar cane belt of São Paulo state (Brazil). Atmos. Environ. 216, 116926 (2019)

    Article  Google Scholar 

  • Goldemberg, J., Mello, F.F., Cerri, C.E., Davies, C.A., Cerri, C.C.: Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy. 69, 14–18 (2014)

    Article  Google Scholar 

  • Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.: A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 100(D5), 8873–8892 (1995)

    Article  Google Scholar 

  • Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model selection: beyond the bayesian/frequentist divide. J. Mach. Learn. Res. 11(Jan), 61–87 (2010)

    Google Scholar 

  • Jardine, K.J., Sommer, E.D., Saleska, S.R., Huxman, T.E., Harley, P.C., Abrell, L.: Gas phase measurements of pyruvic acid and its volatile metabolites. Environ. Sci. Technol. 44(7), 2454–2460 (2010)

    Article  Google Scholar 

  • Keppler, F., Kalin, R., Harper, D., McRoberts, W., Hamilton, J.: Carbon isotope anomaly in the major plant C 1 pool and its global biogeochemical implications. Biogeosciences. 1(2), 123–131 (2004)

    Article  Google Scholar 

  • Kieber, R.J., Guy, A.L., Roebuck, J.A., Carroll, A.L., Mead, R.N., Jones, S.B., Giubbina, F.F., Campos, M.L., Willey, J.D., Avery, G.B.: Determination of ambient ethanol concentrations in aqueous environmental matrixes by two independent analyses. Anal. Chem. 85(12), 6095–6099 (2013). https://doi.org/10.1021/ac400974m

    Article  Google Scholar 

  • Kieber, R.J., Tatum, S., Willey, J.D., Avery, G.B., Mead, R.N.: Variability of ethanol and acetaldehyde concentrations in rainwater. Atmos. Environ. 84, 172–177 (2014). https://doi.org/10.1016/j.atmosenv.2013.11.038

    Article  Google Scholar 

  • Kirstine, W.V., Galbally, I.E.: Ethanol in the environment: a critical review of its roles as a natural product, a biofuel, and a potential environmental pollutant. Crit. Rev. Environ. Sci. Technol. 42(16), 1735–1779 (2012a). https://doi.org/10.1080/10643389.2011.569874

    Article  Google Scholar 

  • Kirstine, W.V., Galbally, I.E.: The global atmospheric budget of ethanol revisited. Atmos. Chem. Phys. 12(1), 545–555 (2012b)

    Article  Google Scholar 

  • MacDonald, R.C., Kimmerer, T.W., Razzaghi, M.: Aerobic ethanol production by leaves: evidence for air pollution stress in trees of the Ohio River valley, USA. Environ. Pollut. 62(4), 337–351 (1989)

    Article  Google Scholar 

  • Manter, D.K., Kelsey, R.G.: Ethanol accumulation in drought-stressed conifer seedlings. Int. J. Plant Sci. 169(3), 361–369 (2008)

    Article  Google Scholar 

  • Millet, D.B., Guenther, A., Siegel, D.A., Nelson, N.B., Singh, H.B., de Gouw, J.A., Warneke, C., Williams, J., Eerdekens, G., Sinha, V.: Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos. Chem. Phys. 10(7), 3405–3425 (2010)

    Article  Google Scholar 

  • Millet, D.B., Apel, E., Henze, D.K., Hill, J., Marshall, J.D., Singh, H.B., Tessum, C.W.: Natural and anthropogenic ethanol sources in North America and potential atmospheric impacts of ethanol fuel use. Environ. Sci. Technol. 46(15), 8484–8492 (2012)

    Article  Google Scholar 

  • NADP: Atmospheric Integrated Research Monitoring Network Site Operations Manual (2018)

  • Naik, V., Fiore, A.M., Horowitz, L.W., Singh, H.B., Wiedinmyer, C., Guenther, A., de Gouw, J.A., Millet, D.B., Goldan, P.D., Kuster, W.C.: Observational constraints on the global atmospheric budget of ethanol. Atmos. Chem. Phys. 10(12), 5361–5370 (2010)

    Article  Google Scholar 

  • Nebraska Department of Environment and Energy: Ethanol failities’ capacity by state. In. http://www.neo.ne.gov/programs/stats/inf/121.htm (2019)

  • NLCD: National Land Cover Database. https://www.mrlc.gov/national-land-cover-database-nlcd-2016. (2020). Accessed 6/20/2020

  • Parnell, A.C., Inger, R., Bearhop, S., Jackson, A.L.: Source partitioning using stable isotopes: coping with too much variation. PLoS One. 5(3), e9672 (2010)

    Article  Google Scholar 

  • Pennsylvania Grain Processing, L.: Pennsylvania Grain Processing: A Producer of Ethaanol and DDGS. In. https://www.pagrain.com/ (2019). Accessed 7/2/2019 2019

  • Poulopoulos, S., Samaras, D., Philippopoulos, C.: Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels. Atmos. Environ. 35(26), 4399–4406 (2001)

    Article  Google Scholar 

  • Powers, S.E., Hunt, C.S., Heermann, S.E., Corseuil, H.X., Rice, D., Alvarez, P.J.: The transport and fate of ethanol and BTEX in groundwater contaminated by gasohol. Crit. Rev. Environ. Sci. Technol. 31(1), 79–123 (2001)

    Article  Google Scholar 

  • Renewable Fuels Association: Annual U.S. Fuel Ethanol Production. In. https://ethanolrfa.org/statistics/annual-ethanol-production/ (2020). Accessed 06/21/18 2020

  • Salvo, A., Geiger, F.M.: Reduction in local ozone levels in urban São Paulo due to a shift from ethanol to gasoline use. Nat. Geosci. 7(6), 450–458 (2014)

    Article  Google Scholar 

  • Schink, B., Phelps, T.J., Eichler, B., Zeikus, J.: Comparison of ethanol degradation pathways in anoxic freshwater environments. Microbiology. 131(3), 651–660 (1985)

    Article  Google Scholar 

  • Shimizu, M.S., Summerlin, S.L., Felix, J.D., Halls, J., Avery, G.B., Kieber, R.J., Lane, C.S., Mead, R.N., Willey, J.D.: Variable ethanol concentrations and stable carbon isotopes reveal anthropogenic ethanol contributions to rainwater. Atmos. Environ. 117578 (2020)

  • Singh, H., Salas, L., Chatfield, R., Czech, E., Fried, A., Walega, J., Evans, M., Field, B., Jacob, D., Blake, D.: Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J. Geophys. Res. Atmos. 109(D15), (2004)

  • Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96(12), 2059–2077 (2015)

    Article  Google Scholar 

  • Still, C.J., Berry, J.A., Collatz, G.J., DeFries, R.S.: Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem. Cycles. 17(1), 6-1–6-14 (2003)

    Article  Google Scholar 

  • U.S. Energy Information Administration: U.S. Production, Consumption, and Trade of Ethanol (2016). http://nadp.slh.wisc.edu/lib/manuals/AIRMoN_Operations_Manual_v_2-4.pdf Accessed 09/2019

  • Willey, J.D., Avery, G.B., Felix, J.D., Kieber, R.J., Mead, R.N., Shimizu, M.S.: Rapidly increasing ethanol concentrations in rainwater and air. NPJ Clim. Atmos. Sci. 2(1), 3 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a Texas A&M University – Corpus Christi Texas Comprehensive Research Fund grant. The funding entity had no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. We thank AIRMoN collaborators, operators, and site supervisors (Ariel Stein, Richard Artz, David Gay, LaToya Myles, Tom Butler, David Stensrud, Julie Dzaak, Chris Lehmann, Robert Ziegler, Simone Klemenz, and Sybil Anderson) for sample collection and shipping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Felix.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Felix, J.D., Myles, L. et al. Wet deposition ethanol concentration at US atmospheric integrated research monitoring network (AIRMoN) sites. J Atmos Chem 78, 125–138 (2021). https://doi.org/10.1007/s10874-020-09414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-020-09414-5

Keywords

Navigation