Skip to main content
Log in

Trace ambient levels of particulate mercury and its sources at a rural site near Delhi

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 03 December 2018

This article has been updated

Abstract

Atmospheric particle-bound mercury levels were measured in PM10 aerosols (HgP) at a rural site (Mahasar, Haryana) during winter 2014–15 and summer 2015. The PM10 HgP was determined by using Differential Pulse Anodic Stripping Voltammetry through standard addition methods while the trace metals were determined by using an Atomic Absorption Spectroscopy. The mass concentrations of HgP varied from 591 to 1533 pg/m3 with an average of 1009 ± 306 pg/m3 during the winter, while the mass concentrations of HgP varied from 43 to 826 pg/m3 with an average of 320 ± 228 pg/m3 during the summer. However, it is difficult to assess whether these levels are harmful or not because there is no standard value available as National Ambient Air Quality Standard. The higher concentrations of HgP during winters were possibly due to favourable local meteorological conditions for the stagnation of particulate matter in the lower atmosphere and the increased emissions from existing natural or anthropogenic sources, regional sources and long-range transportation. Relatively low concentrations of HgP during summer might be due to increased mixing heights as well as scavenging effect because some light to heavy rain events were observed during summer time sampling. However, among other metals determined, the concentration of HgP was the lowest during both the seasons. The study may be useful in assessing the health impacts of PM10 HgP and other metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 03 December 2018

    The original version of this article unfortunately contained a mistake. In pages 5 and 6, a unit was misprinted. Please see below necessary corrections.

References

  • Arora, A., Kumari, A., Kulshrestha, U.: Respirable mercury particulates and other chemical constituents in festival aerosols in Delhi. Curr. World Environ. 13(1), 03–14 (2018)

    Google Scholar 

  • Balaram Krishna, M.V., Karunasagar, D., Arunachalam, J.: Study of mercury pollution near a thermometer factory using lichens and mosses. Environ. Pollut. 124, 357–360 (2003)

    Google Scholar 

  • Blanchard, P., Froude, F.A., Martin, J.B., Dryfhout-Clark, H., Woods, J.T.: Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada. Atmos. Environ. 36, 3735–3743 (2002)

    Google Scholar 

  • Bonfil, Y., Brand, M., Kirowa-Eisner, E.: Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal. Chim. Acta. 424(1), 65–76 (2000)

    Google Scholar 

  • Buldini, P.L., Cavalli, S., Mevoli, A., Lal Sharma, J.: Ion chromatographic and voltammetric determination of heavy and transition metals in honey. Food Chem. 73, 487–495 (2001)

    Google Scholar 

  • Buzica, D., Gerboles, M., Borowiak, A., Trincherini, P., Passarella, R., Pedroni, V.: Comparison of voltammetry and inductively coupled plasma-mass spectrometry for the determination of heavy metals in PM10 airborne particulate matter. Atmos. Environ. 40(25), 4703–4710 (2006)

    Google Scholar 

  • Central Pollution Control Board (CPCB). New Delhi, http://www.cpcb.nic.in (2001). Accessed 23 July 2018

  • Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., Kajii, Y.: Reactive and particulate mercury in the Asian marine boundary layer. Atmos. Environ. 42, 7988–7996 (2008)

    Google Scholar 

  • Cheng, I., Zhang, L., Blanchard, P., Dalziel, J., Tordon, R.: Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia. Canada. Atmos. Chem. Phys. 13, 6031–6048 (2013)

    Google Scholar 

  • Choi, H.D., Huang, J., Mondal, S., Holsen, T.M.: Variation in concentrations of three mercury (hg) forms at a rural and a suburban site in New York state. Sci. Total Environ. 448, 96–106 (2013)

    Google Scholar 

  • Dirilgen, N., Dogan, F., Ozbal, H.: Anodic stripping voltammetry: arsenic determination in ancient bone samples. Anal. Lett. 39(1), 127–143 (2006)

    Google Scholar 

  • Dockery, D.W., Pope, C.A.: Acute respiratory effects of particulate air pollution. Auun. Rev. Publ. Health. 15, 107–132 (1994)

    Google Scholar 

  • Driscoll, C.T., Han, Y.J., Chen, C.Y., Evers, D.C., Lambert, K.F., Holsen, T.M., Kamman, N.C., Munson, R.K.: Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience. 57, 17–28 (2007)

    Google Scholar 

  • Driscoll, C., Mason, R., Chan, H., Jacob, D., Pirrone, N.: Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013)

    Google Scholar 

  • Duan, L., Cheng, N., Xiu, G., Wang, F., Chen, Y.: Characteristics and source appointment of atmospheric particulate mercury over East China Sea: implication on the deposition of atmospheric particulate mercury in marine environment. Environ. Pollut. 224, 26–34 (2017)

    Google Scholar 

  • Espinosa, A.J.F., Rodríguez, M.T., Barragán de la Rosa, F.J., Jiménez Sánchez, J.C.: Size distribution of metals in urban aerosols in Seville (Spain). Atmos. Environ. 35, 2595–2601 (2001)

    Google Scholar 

  • Fang, F., Wang, Q., Li, J.: Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. Sci. Total Environ. 281, 229–236 (2001)

    Google Scholar 

  • Farghaly, O.A., Ghandour, M.A.: Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environ. Res. 97, 229–235 (2005)

    Google Scholar 

  • Feeney, R., Kounaves, S.P.: Voltammetric measurements of arsenic in natural waters. Talanta. 58, 23–31 (2002)

    Google Scholar 

  • Feng, X.B., Shang, L.H., Wang, S.F., Tang, S.L., Zheng, W.: Temporal variation of total gaseous mercury in the air of Guiyang, China. J. Geophys. Res. 109, (2004)

  • Fleming, E.J., Mack, E.E., Green, P.G., Nelson, D.C.: Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl. Environ. Microbiol. 72(1), 457–464 (2006)

    Google Scholar 

  • Fostier, A.H., Michelazzo, P.A.: Gaseous and particulate atmospheric mercury concentrations in the Campinas metropolitan region (São Paulo state, Brazil). J. Braz. Chem. Soc. 17, 886–894 (2006)

    Google Scholar 

  • Fu, X.W., Feng, X.B., Qiu, G.L., Shang, L.H., Zhang, H.: Speicated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ. 45, 4205–4212 (2011)

    Google Scholar 

  • Gratz, L.E., Keeler, G.J., Marsik, F.J., Barres, J.A., Dvonch, J.T.: Atmospheric transport of speciated mercury across southern Lake Michigan: influence from emission sources in the Chicago/Gary urban area. Sci. Total Environ. 448, 84–95 (2013)

    Google Scholar 

  • Guo, J., Kang, S., Huang, J., Zhang, Q., Rupakheti, M., Sun, S., Tripathee, L., Rupakheti, D., Panday, A.K., Sillanpää, M., Paudyal, R.: Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Sci. Total Environ. 579, 1240–1248 (2017)

    Google Scholar 

  • Han, Y.J., Kim, J.E., Kim, P.R., Kim, W.J., Yi, S.M., Seo, Y.S., Kim, S.H.: General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high concentration events. Atmos. Environ. 94, 754–764 (2014)

    Google Scholar 

  • Harikumar, P.S., Dhruvan, A., Sabna, V., Babitha, A.: Study on the leaching of mercury from compact fluorescent lamps using stripping voltammetry. J. Toxicol. Environ. Health Sci. 3(1), 008–013 (2011)

    Google Scholar 

  • Hong, Y., Chen, J., Deng, J., Tong, L., Xu, L., Niu, Z., Yin, L., Chen, Y., Hong, Z.: Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environ. Pollut. 218, 259–268 (2016)

    Google Scholar 

  • Hu, Q.H., Kang, H., Li, Z., Wang, Y.S., Ye, P.P., Zhang, L.L., Yu, J., Yu, X.W., Sun, C., Xie, Z.Q.: Characterization of atmospheric mercury at a suburban site of Central China from winter time to springtime. Atmos. Pollut. Res. 5(4), 769–778 (2014)

    Google Scholar 

  • Huang, J., Kang, S., Guo, J., Zhang, Q., Cong, Z., Sillanpää, M., Zhang, G., Sun, S., Tripathee, L.: Atmospheric particulate mercury in Lhasa city, Tibetan plateau. Atmos. Environ. 142, 433–441 (2016)

    Google Scholar 

  • Jayasekher, T.: Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation. Chemosphere. 75, 1525–1530 (2009)

    Google Scholar 

  • Jayasekher, T., Kumaresan, S., Radhika, S.L., Biju, B., Sindhu, M., Iyer, C.S.P.: Statistical analysis of the aerosol elemental composition in an Industrial Belt. Bull. Environ. Contam. Toxicol. 73, 53–58 (2004)

    Google Scholar 

  • Jiang, Y., Cizdziel, J.V., Lu, D.: Temporal patterns of atmospheric mercury species in northern Mississippi during 2011- 2012: influence of sudden population swings. Chemosphere. 93, 1694–1700 (2013)

    Google Scholar 

  • Johansson, K., Bergback, B., Tyler, G.: Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment. Water Air Soil Pollut. Focus. 1(3), 279–297 (2001)

    Google Scholar 

  • Karunasagar, D., Krishna, V.M., Anjaneyulu, Y., Arunachalam, J.: Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikkanal, India. Environ. Pollut. 143, 153–158 (2006)

    Google Scholar 

  • Kim, S.H., Han, Y.J., Holsen, T.M., Yi, S.M.: Characteristics of atmospheric speciated mercury concentrations (TGM, hg(II) and hg(p)) in Seoul, Korea. Atmos. Environ. 43, 3267–3274 (2009)

    Google Scholar 

  • Kim, P.R., Han, Y.J., Holsen, T.M., Yi, S.M.: Atmospheric particulate mercury: concentrations and size distributions. Atmos. Environ. 61, 94–102 (2012)

    Google Scholar 

  • Koshle, A., Pervez, Y.F., Tiwari, R.P., Pervez, S.: Environmental pathways and distribution pattern of total mercury among soils and groundwater matrices around an integrated steel plant in India. J. Sci. Ind. Res. 67, 523–530 (2008)

    Google Scholar 

  • Kulshrestha, U.C., Rao, T.N., Azhaguvel, S., Kulshrestha, M.J.: Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmos. Environ. 38(27), 4421–4425 (2004)

    Google Scholar 

  • Kulshrestha, M.J., Singh, R., Engardt, M.: Ambient and episodic levels of metals in PM10 aerosols and their source apportionment in Central Delhi, India. J. Hazard. Toxic Radioact. Waste. 20(4), A4014002 (2014)

    Google Scholar 

  • Kumari, A., Kumar, B., Manzoor, S., Kulshrestha, U.: Status of atmospheric mercury research in South Asia: a review. Aerosol Air Qual. Res. 15, 1092–1109 (2015)

    Google Scholar 

  • Kushwaha, R., Srivastava, A., Lai, H., Ghosh, B., Jain, V.K.: Particles size distribution of aerosols and associated metals, and source estimation in Delhi, India. Sustain. Environ. Res. 22(5), 317–325 (2012)

    Google Scholar 

  • Landis, M.S., Keeler, G.J.: Atmospheric mercury deposition to Lake Michigan during the Lake Michigan mass balance study. Environ. Sci. Technol. 36, 4518–4524 (2002)

    Google Scholar 

  • Li, J., Sommar, J., Wängberg, I., Lindqvist, O., Wei, S.Q.: Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005. Atmos. Environ. 42(36), 8382–8388 (2008)

    Google Scholar 

  • Li, Y., Wang, Y., Li, Y., Li, T., Mao, H., Talbot, R., Nie, X., Wu, C., Zhao, Y., Hou, C., Wang, G.: Characteristics and potential sources of atmospheric particulate mercury in Jinan, China. Sci. Total Environ. 574, 1424–1431 (2017)

    Google Scholar 

  • Lindberg, S.E., Stratton, W.J.: Atmospheric mercury speciation: concentrations and behaviour of reactive gaseous mercury in ambient air. Environ. Sci. Technol. 32, 49–57 (1998)

    Google Scholar 

  • Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., Morgan, J.T.: Urban-rural differences in atmospheric mercury speciation. Atmos. Environ. 44, 2013–2023 (2010)

    Google Scholar 

  • Locatelli, C., Melucci, D.: Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food Chem. 130(2), 460–466 (2012)

    Google Scholar 

  • Locatelli, C., Torsi, G.: Analytical procedures for the simultaneous voltammetric determination of heavy metals in meals. Microchem. J. 75, 233–240 (2003)

    Google Scholar 

  • Lu, J., Schroeder, W.: Sampling and determination of particulate mercury in ambient air: a review. Water Air Soil Pollut. 112, 279–295 (1999)

    Google Scholar 

  • Mamani, M.C.V., Aleixo, L.M., Ferreira de Abreu, M., Rath, S.: Simultaneous determination of cadmium and lead in medicinal plants by anodic stripping voltammetry. J. Pharm. Biomed. Anal. 37, 709–713 (2005)

    Google Scholar 

  • Manolopoulos, H., Snyder, D.C., Schauer, J.J., Hill, J.S., Turner, J.R., Olson, M.L., Krabbenhoft, D.P.: Sources of speciated atmospheric mercury at a residential neighbourhood impacted by industrial sources. Environ. Sci. Technol. 41, 5626–5633 (2007)

    Google Scholar 

  • Mao, H., Talbot, R.: Speciated mercury at marine, coastal, and inland sites in New England - part 1: temporal variability. Atmos. Chem. Phys. 12, 5099–5112 (2012)

    Google Scholar 

  • Mao, H., Cheng, I., Zhang, L.: Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review. Atmos. Chem. Phys. 16(20), 12897–12924 (2016)

    Google Scholar 

  • Mason, R.P., Morel, F.M.M., Hemond, H.F.: The role of microorganisms in elemental 25 mercury formation in natural water. Water Air Soil Pollut. 80, 775–787 (1995)

    Google Scholar 

  • Metrohm: Determination of Mercury in Potable Water. VA Application Work AW UK4-0183-092007, Metrohm (2007). https://www.metrohm.com/en/company/news/news-mercury-in-water/ retrieved on July 23, 2018

  • Moore, C.W., Obrist, D., Luria, M.: Atmospheric mercury depletion events at the Dead Sea: spatial and temporal aspects. Atmos. Environ. 69, 231–239 (2013)

    Google Scholar 

  • Morton-Bermea, O., Garza-Galindo, R., Hernández-Álvarez, E., Ordoñez-Godínez, S.L., Amador-Muñoz, O., Beramendi-Orosco, L., Miranda, J., Rosas-Pérez, I.: Atmospheric PM2.5 mercury in the metropolitan area of Mexico City. Bull. Environ. Contam. Toxicol. 100(4), 588–592 (2018)

    Google Scholar 

  • Nedeltcheva, T., Atanassova, M., Dimitrov, J., Stanislavova, L.: Determination of mobile form contents of Zn, cd, Pb and cu in soil extracts by combined stripping voltammetry. Anal. Chim. Acta. 528(2), 143–146 (2005)

    Google Scholar 

  • Nguyen, D.L., Kim, J.Y., Shim, S.G., Ghim, Y.S., Zhang, X.S.: Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Environ. Pollut. 219, 262–274 (2016)

    Google Scholar 

  • Nriagu, J.O.: A global assessment of natural sources of atmospheric trace metals. Nature. 338, 47–49 (1989)

    Google Scholar 

  • Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P.: Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44(20), 2487–2499 (2010)

    Google Scholar 

  • Pankow, J.F.: Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 21, 2275–2283 (1987)

    Google Scholar 

  • Pervez, S., Koshle, A., Pervez, Y.: Study of spatiotemporal variation of atmospheric mercury and its human exposure around an integrated steel plant. India. Atmos. Chem. Phys. 10, 5535–5549 (2010)

    Google Scholar 

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 10, 5951–5964 (2010)

    Google Scholar 

  • Pyta, H., Rogula-Kozłowska, W.: Determination of mercury in size-segregated ambient particulate matter using CVAAS. Microchem. J. 124, 76–81 (2016)

    Google Scholar 

  • Pyta, H., Rosik-Dulewska, C., Czaplicka, M.: Speciation of ambient mercury in the upper silesia region, Poland. Water Air Soil Pollut. 197, 233–240 (2008)

    Google Scholar 

  • Rutter, A.P., Schauer, J.J.: The effect of temperature on the gas-particle partitioning of reactive mercury in atmospheric aerosols. Atmos. Environ. 41, 8647–8657 (2007)

    Google Scholar 

  • Rutter, A.P., Snyder, D.C., Stone, E.A., Schauer, J.J., Gonzalez-Abraham, R., Molina, L.T., Márquez, C., Cárdenas, B., Foy, B.D.: In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City metropolitan area. Atmos. Chem. Phys. 9(1), 207–220 (2009)

    Google Scholar 

  • Sakata, M., Marumoto, K.: Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmos. Environ. 36, 239–246 (2002)

    Google Scholar 

  • Schleicher, N.J., Schäfer, J., Blanc, G., Chen, Y., Chai, F., Cen, K., Norra, S.: Atmospheric particulate mercury in the megacity Beijing: spatio-temporal variations and source apportionment. Atmos. Environ. 109, 251–261 (2015)

    Google Scholar 

  • Schroeder, W.H., Munthe, J.: Atmospheric mercury- an overview. Atmos. Environ. 32(5), 809–822 (1998)

    Google Scholar 

  • Selin, H.: Global environmental law and treaty-making on hazardous substances: the Minamata convention and mercury abatement. Glob. Environ. Polit. 14, 1–19 (2014)

    Google Scholar 

  • Shah, M.H., Shaheen, N., Jaffar, M.: Characterization, source identification and apportionment of selected metals in TSP in an urban atmosphere. Environ. Monit. Assess. 114, 573–587 (2006)

    Google Scholar 

  • Shannon, J.D., Voldner, E.C.: Modeling atmospheric concentrations of mercury and deposition to the Great Lakes. Atmos. Environ. 29, 1649–1661 (1995)

    Google Scholar 

  • Song, X.J., Cheng, I., Lu, J.: Annual atmospheric mercury species in downtown Toronto, Canada. J. Environ. Monit. 11, 660–669 (2009)

    Google Scholar 

  • Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., Dommergue, A.: A review of worldwide atmospheric mercury measurements. Atmos. Chem. Phys. 10, 8245–8265 (2010)

    Google Scholar 

  • US EPA: Mercury update: impact in fish advisories. U.S. Environmental Protection Agency, 15 Office of Water. 4305. EPA-823-F-01-011 (2001)

  • Wang, Z., Zhang, X., Chen, Z., Zhang, Y.: Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmos. Environ. 40, 2194–2201 (2006)

    Google Scholar 

  • Weigelt, A., Temme, C., Bieber, E., Schwerin, A., Schuetze, M., Ebinghaus, R., Kock, H.H.: Measurements of atmospheric mercury species at a German rural background site from 2009 to 2011–methods and results. Environ. Chem. 10(2), 102–110 (2013)

    Google Scholar 

  • Xiu, G.L., Cai, J., Zhang, W.Y., Zhang, D.N., Bueler, A., Lee, S.C., Shen, Y., Xu, L.H., Huang, X.J., Zhang, P.: Speciated mercury in size fractionated particles in shanghai ambient air. Atmos. Environ. 43, 3145–3154 (2009)

    Google Scholar 

  • Xu, L., Chen, J., Yang, L., Niu, Z., Tong, L., Yin, L., Chen, Y.: Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere. 119, 530–539 (2015)

    Google Scholar 

  • Zhang, F.W., Xu, L.L., Chen, J.S., Yu, Y.K., Niu, Z.C., Yin, L.Q.: Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–may 2010. Atmos. Res. 106, 150–158 (2012)

    Google Scholar 

  • Zhang, L., Wang, S.X., Wang, L., Hao, J.M.: Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implication of mercury emission sources. Atmos. Chem. Phys. 13, 10505–105169 (2013)

    Google Scholar 

  • Zhu, J., Wang, T., Talbot, R., Mao, H., Yang, X., Fu, C., Sun, J., Zhuang, B., Li, S., Han, Y., Xie, M.: Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmos. Chem. Phys. 14(5), 2233–2244 (2014)

    Google Scholar 

  • Zielonka, U., Hlawiczka, S., Fudala, J., Wängberg, I., Munthe, J.: Seasonal mercury concentrations measured in rural air in southern Poland: contribution from local and regional coal combustion. Atmos. Environ. 39(39), 7580–7586 (2005)

    Google Scholar 

Download references

Acknowledgements

This study was supported by UGC-UPA II project (Project ID 149). Financial assistance from DST-PURSE is also acknowledged for this work. Author Anita Kumari acknowledges the award of Shyama Prasad Mukherjee (SPM) Fellowship from Council of Scientific and Industrial Research (CSIR) of India. We would also like to thank anonymous reviewers for their valuable suggestions for improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Kulshrestha.

Additional information

The original version of this article was revised: Several mistakes were caused by typesetting: table alignments, reference citation not enclosed in parenthesis, and a unit was misprinted. Most of the corrections are minor (i.e. insertion of comma). The corrected data are now shown here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Kulshrestha, U. Trace ambient levels of particulate mercury and its sources at a rural site near Delhi. J Atmos Chem 75, 335–355 (2018). https://doi.org/10.1007/s10874-018-9377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-018-9377-0

Keywords

Navigation