Skip to main content
Log in

Uptake of nitrogen dioxide (NO2) on acidic aqueous humic acid (HA) solutions as a missing daytime nitrous acid (HONO) surface source

  • ORIGINAL PAPER
  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 04 August 2017

This article has been updated

Abstract

A comprehensive kinetic study of a potential daytime nitrous acid (HONO) source reaction, the photoenhanced reduction reaction of the nitrogen dioxide (NO2) on acidic humic acid (HA), was completed using a wetted-wall flow tube (WWFT) (Fickert et al.: J. Phys. Chem. A. 102, 10689, 1998) photoreactor integrated with a high sensitivity HONO analyser (Wall et al.: J. Atmos. Chem. 55, 31–54, 2006; Huang et al.: Atmos. Environ. 36, 2225–2235, 2002). The nature of this reaction, is of great interest since recently observed, unpredictably high HONO daytime concentrations demand its ordinarily proposed heterogeneous source to proceed 60 times more rapidly at noon than during the night (Kleffmann et al.: ChemPhysChem 8, 1137–1144, 2007). This study investigated the nature of the reduction reaction with simulated colloidal HA aqueous solutions characteristic of anaerobic environmental conditions, varying in acidity, concentration and composition. Typical urban NO2 levels were investigated. Increasing photoenhanced HONO production with weakening solution acidity was detected due to increased deprotonation of the carboxyl groups within the humic acid. It was deduced that the acidic HA substrate contains numerous feasible chromophoric sensitizer units capable of photochemically reducing NO2 to HONO, owing to its ‘biofilm’ (Donlan, 2002) function under UV exposure. The mechanism was found to be more effective for HA standards with higher levels of ‘bioactivity’ (refractivity). Using a complex mathematical model developed, incorporating both chemistry and diffusion, reaction probability datasets were produced from the experimental data, providing evidence that this is, indeed, an environmentally important daytime HONO surface source reaction. The parameters required to scale up the data of the photoreactor to that of a regional rural/urban scale were assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 04 August 2017

    An erratum to this article has been published.

References

  • Acker, K., Febo, A., Trick, S., Perrino, C., Bruno, P., Wiesen, P., Möller, D., Wieprecht, W., Auel, R., Giusto, M., Geyer, A., Platt, U., Allegrini, I.: Nitrous acid in the urban area of Rome. Atmos. Environ. 40, 3123–3133 (2006a)

    Article  Google Scholar 

  • Acker, K., Möller, D., Wieprecht, W., Meixner, F.X., Bohn, B., Gilge, S., Plass-Dülmer, C., Berrensheim, H.: Strong daytime production of OH from HNO2 at a rural mountain site, Geophys. Res. Lett., 33, L02809 (2006b). doi:10.1029/2005GL024643

  • Acker, K., Beysens, D., Moller, D.: Atmos. Res. 87, 200 (2008)

    Article  Google Scholar 

  • Albers, C.N., Hansen, P.E.: 13C-NMR Chemical shift databases as a quick tool to evaluate structural models of humic substances. Open Magn. Reson. J. 3, 96–105 (2010)

    Article  Google Scholar 

  • Albers, C.N., Banta, G.T., Jacobsen, O.S., Hansen, P.E.: Characterization and structural modelling of humic substances in field soil displaying significant differences from previously proposed structures. Eur. J. Soil Sci. 59, 693–705 (2008)

    Article  Google Scholar 

  • Albert, A., Serjeant, E.P.: The Determination of Ionization Constants. Chapman & Hall, London and New York (1984)

    Book  Google Scholar 

  • Allard, B., Borén, H., Pettersson, C., Zhang, G.: Degradation of humic substances by UV irradiation. Environ. Int. 20, 97–101 (1994)

    Article  Google Scholar 

  • Al-Obaidi, U., Moodie, R.B.: The nitrous acid-catalysed ni-tration of phenol. J Chem Soc Perkin II, 467–472 (1985)

    Article  Google Scholar 

  • Ammann, M., Rössler, E., Strekowski, R., George, C.: Nitrogen dioxide multiphase chemistry: uptake kinetics on aqueous solutions containing phenolic compounds. Phys. Chem. Chem. Phys. 7, 2513–2518 (2005)

    Article  Google Scholar 

  • Arain, M.A., Blair, R., Finkelstein, N., Brook, J.R., Sahsuvaroglu, T., Beckerman, B., Zhang, L., Jerrett, M.: The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos. Environ. 41, 3453–3464 (2007)

    Article  Google Scholar 

  • Aumont, B., Chervier, F., Laval, S.: Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer. Atmos. Environ. 37(4), 487–498 (2003)

    Article  Google Scholar 

  • Badger, C.L., George, I., Griffiths, P.T., Braban, C.F., Cox, R.A., Abbatt, J.P.D.: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulfate. Atmos. Chem. Phys. 6, 755–768 (2006)

    Article  Google Scholar 

  • Bartels-Rausch, T., Brigante, M., Elshorbany, Y.F., Ammann, M., D’Anna, B., George, C., Stemmler, K., Ndour, M., Kleffmann, J.: Humic acid in ice: photo-enhanced conversion of nitrogen dioxide into nitrous acid. Atmos. Environ. 44, 5443–5450 (2010)

    Article  Google Scholar 

  • Beck, A.J., Jones, K.C., Hayes, M.H.B., Mingelgrin, U. (eds.): Organic Substances in Soil and Water: Natural Constituents and Their Influences on Contaminant Behavior. The Royal Society of Chemistry, Cambridge (1993)

    Google Scholar 

  • Birdi, K. S.: Surface Chemistry Essentials. CRC Press (2013)

  • Canonica, S., Jans, U., Stemmler, K., Hoigne, J.: Transformation kinetics of phenols in water – Photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 29, 1822–1831 (1995)

    Article  Google Scholar 

  • Carr, S., Heard, D.E., Blitz, M.A.: Comment on “Atmospheric hydroxyl radical production from electronically excited NO2 and H2O”. Science 324, 336b (2009)

    Article  Google Scholar 

  • Cheung, J.L., Li, Y.Q., Boniface, J., Shi, Q., Davidovits, P., Worsnop, D.R., Jayne, J.T., Kolb, C.E.: J. Phys. Chem. A. 104, 2655–2662 (2000)

  • Danckwerts, P.V.: Gas–liquid Reactions. McGraw-Hill, New York (1970)

    Google Scholar 

  • David, C., Mongin, S., Rey-Castro, C., Galceran, J., Companys, E., Garces, J.L., Salvador, J., Puy, J., Cecilia, J., Lodeiro, P., Mas, F.: Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions. Geochim. Cosmochim. Acta 74(18), 5216–5227 (2010)

    Article  Google Scholar 

  • Donaldson, D.J., George, C., Vaida, V.: Red sky at night: Long-wavelength photochemistry in the atmosphere. Environ. Sci. Technol. 44, 5321–5326 (2010)

    Article  Google Scholar 

  • Donaldson, M.A., Bish, D.L., Raff, J.D.: Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid. Proc. Natl. Acad. Sci. 11, 18472–18477 (2014)

    Article  Google Scholar 

  • Donlan, R.M.: Biofilms: Miocrobial life on surfaces. Emerg. Infect. Dis. 8(9), 881–890 (2002)

    Article  Google Scholar 

  • Elshorbany, Y.F., Steil, B., Brühl, C., Lelieveld, J.: Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model. Atmos. Chem. Phys. 12, 9977–10000 (2012)

    Article  Google Scholar 

  • Elshorbany, Y.F., Crutzen, P.J., Steil, B., Pozzer, A., Tost, H., Lelieveld, J.: Global and regional impacts of HONO on the chemical composition of clouds and aerosols. Atmos. Chem. Phys. 14, 1167–1184 (2014)

    Article  Google Scholar 

  • Engebretson, R.R., von Wandruszka, R.: Environ. Sci. Technol. 28, 1934 (1994)

    Article  Google Scholar 

  • Engebretson, R.R., Amos, T., von Wandruszka, R.: Quantitative approach to humic acid associations. Environ. Sci. Technol. 30(3), 390 (1996)

    Article  Google Scholar 

  • Fickert, S., Helleis, F., Adams, J.W., Moortgat, G.K., Crowley, J.N.: J. Phys. Chem. A 102, 10689 (1998)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts, J.N.: Chemistry of the Upper and Lower Atmosphere: Theory. Experiments and Applications. Academic, San Diego (2000)

    Google Scholar 

  • Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A.: The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys. Chem. Chem. Phys. 5, 223–242 (2003)

    Article  Google Scholar 

  • Francioso, O., Ciavatta, C., Montecchio, D., Tugnoli, V., Sanchez-Cortez, S., Gessa, C.: Quantitative estimation of peat, brown coal and lignite humic acids using chemical parameters, 1H-NMR and DTA analyses. Bioresour. Technol. 88, 189–195 (2003)

    Article  Google Scholar 

  • George, C., Strekowski, R.S., Kleffmann, J., Stemmler, K., Ammann, M.: Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO? Faraday Discuss. 130, 195–210 (2005)

    Article  Google Scholar 

  • Grant, R.H., Slusser, J.R.: Estimation of ultraviolet-A irradiance from measurements of 368-nm spectral irradiance. J. Atmos. Ocean. Technol. 22, 1853–1863 (2005)

    Article  Google Scholar 

  • Grimnes, A. A., Futsæther, C., Berre, B., Bjorkan, E. O., Johnsen B.: Calibration of a UV broadband instrument – Eppley TUVR. UVnet (poster), 5th Workshop on Ultraviolet radiation measurements. October 7–8, 2002. Kassandra, Halkidki, Greece

  • Gutzwiller, L., Arens, F., Baltensperger, U., Gäggeler, H.W., Ammann, M.: Environ. Sci. Technol. 36, 677–682 (2002)

    Article  Google Scholar 

  • Hanson, D.R., Lovejoy, E.R.: Heterogeneous reactions in liquid sulphuric acid: HOCl + HCl as a model system. J. Phys. Chem. 100, 6397–6405 (1996)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: Geophys. Res. Lett. 22, 385 (1995)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R., Solomon, S.: Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations. J. Geophys. Res. 99, 3615–3629 (1994)

    Article  Google Scholar 

  • Harris, G.W., Carter, W.P.L., Winer, A.M., Pitts, J.N.: Observation of nitrous acid in the Los Angeles atmosphere and implication for predictions of ozone–precursor relationships. Environ. Sci. Technol. 16, 414–419 (1982)

    Article  Google Scholar 

  • Harrison, R.M., Kitto, A.-M.N.: Atmos. Environ. 28, 1089–1094 (1994)

    Article  Google Scholar 

  • Havers, N., Burba, P., Lambert, J., Klockow, D.: Spectroscopic characterization of humic-like substances in airborne particulate matter. J. Atmos. Chem. 29, 45–54 (1998)

    Article  Google Scholar 

  • Hayes, M.H.B., Swift, R.S.: Progress towards understanding aspects of composition and structure of humic substances. In: Understanding and Managing Organic Matter in Soils, Sediments, and Waters. R.S. Swift and K.M. Spark (Eds). International Humic Substances Society (IHSS) (2001)

  • Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Amosti, C., Derenne, S., Evershed, R.P., Kogel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., Rullkotter, J.: The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958 (2000)

    Article  Google Scholar 

  • Heland, J., Kleffmann, J., Kurtenbach, R., Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ. Sci. Technol. 35, 3207–3212 (2001)

    Article  Google Scholar 

  • Hertkorn, N., Permin, A., Perminova, I., Kovalevskii, D., Yudov, M., Petrosyan, V., Kettrup, A.: Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy. J. Environ. Qual. 31, 375–387 (2002)

    Article  Google Scholar 

  • Heuglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., Vonmont, H.: Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 39, 637–651 (2005)

    Article  Google Scholar 

  • Howard, C.J.: J. Phys. Chem., 83, 3 (1979)

  • Huang, G., Zhou, X., Deng, G., Huancheng, Q., Civerolo, K.: Measurements of atmospheric nitrous acid and nitric acid. Atmos. Environ. 36, 2225–2235 (2002)

    Article  Google Scholar 

  • Huang, X.-F., He, L.-Y., Hu, M., Zhang, Y.-H.: Atmos. Environ. 40, 2449–2458 (2006)

    Article  Google Scholar 

  • Hur, J., Schlautman, M.A.: Environ. Sci. Technol. 3, 880 (2003)

    Article  Google Scholar 

  • Jammoul, A., Gligorovski, S., George, C., D’Anna, B.: J. Phys. Chem. A 112, 1268 (2008)

    Article  Google Scholar 

  • Janzen, H.H.: Carbon cycling in earth systems – a soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004)

    Article  Google Scholar 

  • Jenkin, Utembe, S.R., Derwent, R.G.: Atmos. Environ. 42, 323–336 (2008)

    Article  Google Scholar 

  • Khalizov, A.F., Cruz-Quinones, M., Zhang, R.Y.: Heterogeneous reaction of NO2 on fresh and coated soot surfaces. J. Phys. Chem. A 114(28), 7516–7524 (2010)

    Article  Google Scholar 

  • Kim, S.-K., Kang, H.: Efficient conversion of nitrogen dioxide into nitrous acid on ice surfaces. J. Phys. Chem. Lett. 1, 3085–3089 (2010)

    Article  Google Scholar 

  • Kim, J.I., Buckau, G., Li, G.H., Duschner, H., Psarros, N.: Characterization of humic and fulvic acids from Gorleben groundwater. Fresnius J. Anal. Chem. 338, 245–252 (1990)

    Article  Google Scholar 

  • Kirk, J.T.O.: Optics of UV-B radiation in natural waters. Erbeg. Limnol. 43, 1–16 (1994)

    Google Scholar 

  • Kirk, J.T.O.: Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge (1994b)

  • Kleffmann, J.: Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. ChemPhysChem 8, 1137–1144 (2007)

    Article  Google Scholar 

  • Kleffmann, J., Wiesen, P.: Heterogeneous conversion of NO2 and NO on HNO3 treated soot surfaces: atmospheric implications. Atmos. Chem. Phys. 5(1), 77–83 (2005)

    Article  Google Scholar 

  • Kleffmann, J., Kurtenbach, R., Lӧrzer, J.C., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H.: Atmos. Environ. 37, 2949–2955 (2003)

    Article  Google Scholar 

  • Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, /R., Rupp, L., Schlosser, E., Siesse, M., Wahner, A.: Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys. Res. Lett. 32(5) (2005)

  • Kolb, C.E., Worsnop, D. R., Zahniser, M. S., Davidovits, P., Hanson, D. R., Ravishankara, A. R., Keyser, L. F., Leu, M. T., Williams, L. R., Molina, M. J., Tolbert, M.A.: In Barker, J. R. (ed) Advances in Physical Chemistry Series, vol. 3. World Scientific, Singapore (1994)

  • Kolb, C.E., Cox, R.A., Abbatt, J.P.D., Ammann, M., Davis, E.J., Donaldson, D.J., Garrett, B.C., George, C., Griffiths, P.T., Hanson, D.R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M.J., Rudich, Y., Wagner, P.E., Winkler, P.M., Worsnop, D.R., O’Dowd, C.D.: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 10, 10561–10605 (2010)

    Article  Google Scholar 

  • Lam, B., Diamond, M.L., Simpson, M.L., Donaldson, D.J., Lefebvre, B.A., Moser, A.Q., Williams, A.J., Larin, N.I., Kvasha, M.P.: Chemosphere 53, 142 (2006)

    Google Scholar 

  • Lammel, G.: Formation of nitrous acid: parameterization and comparison with observations. Report No. 286, Max-Planck-Institut-fur Meteorologie, Hamburg, pp. 1–36 (1999)

  • Lee, J.D., Whalley, L.K., Heard, D.E., Stone, D., Dunmore, R.E., Hamilton, J.F., Young, D.E., Allan, J.D., Laufs, S., Kleffmann, J.: Detailed budget analysis of HONO in central London reveals a missing daytime source. Atmos. Chem. Phys. 16, 2747–2764 (2016). doi:10.5194/acp-16-2747-2016

    Article  Google Scholar 

  • Li, S.P., Matthews, J., Sinha, A.: Science 319, 1657 (2008)

    Article  Google Scholar 

  • Malcolm, R.L.: The uniqueness of humic substances in each of soil, stream and marine environments. Anal. Chim. Acta 232, 19–30 (1990)

    Article  Google Scholar 

  • Mao, J., Ding, G., Xing, B.: Domain mobility of humic acids investigated with one- and two-dimensional nuclear magnetic resonance: Support for dual mode sorption model. Commun. Soil Sci. Plant Anal. 33, 1679–1688 (2002)

    Article  Google Scholar 

  • Marcelo, J., Wilkinson, K.J.: Disaggregation kinetics of a peat humic acid: mechanism and pH effects. Environ. Sci. Technol. 36, 5100–5105 (2002)

    Article  Google Scholar 

  • McKnight, D., Thurman, E.M., Wershaw, R.L., Hemond, H.: Biogeochemistry of aquatic humic substances in Thoreau’s bog, Concord, Massachusetts. Ecology 66(4), 1339–1352 (1985)

    Article  Google Scholar 

  • Miao, J.L., Wang, W.F., Pan, J.X., Lu, C.Y., Li, R.Q., Yao, S.D.: Radiat Phys. Chem. 60, 163 (2001)

    Article  Google Scholar 

  • Montecchio, D., Ciavatta, C., Seeber, R., Tonelli, D., Manunza, B., Gessa, C.: Acid–base properties of humic and fulvic acids: a study using potentiometric titrations. In: Swift, R.S., Spark, K.M. (eds.) Understanding and managing organic matter in soils, sediments, and waters. IHSS (2001)

  • Moore, T.R., Matos, L., Roulet, N.T.: Dynamics and chemistry of dissolved organic carbon in Precambrian Shield catchments and an impounded wetland. Can. J. Fish. Aquat. Sci. 60, 612–623 (2003)

    Article  Google Scholar 

  • Nieto-Gligorovski, L., Net, S., Gligorovski, S., Zetzsch, C., Jammoul, A., D’Anna, B., George, C.: Phys. Chem. Chem. Phys. 10, 2964 (2008)

    Article  Google Scholar 

  • Olson, J. R., Crawford, J.H., Chen, G., Brune, W.H., Faloona, I.C., Tan, D., Harder, H., Martinez, M.: J. Geophys. Res. (Atmos.) 111, (2006). doi:10.1029/2005JD006617

  • Oswald, R., Ermel, M., Hens, K., Novelli, A., Ouwersloot, H.G., Paasonen, P., Petäjä, T., Sipilä, M., Keronen, P., Bäck, J., Königstedt, R., Hosaynali Beygi, Z., Fischer, H., Bohn, B., Kubistin, D., Harder, H., Martinez, M., Williams, J., Hoffmann, T., Trebs, I., Sörgel, M.: A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland. Atmos. Chem. Phys. 15, 799–813 (2015)

    Article  Google Scholar 

  • Park, J.-Y., Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 92, 6294–6302 (1988)

    Article  Google Scholar 

  • Paxéus, N., Wedborg, M.: Anal. Chim. Acta, 169 (1985)

  • Perreau, K.A., Li, P., Covington, E., Song, C.H., Carmichael, G.R., Grassian, V.H.: Heterogeneous reactions of volatile organic compounds on oxide particles of the most abundant crustal elements: surface reactions of acetaldehyde, acetone, and propionaldehyde on SiO2, Al2O3, Fe2O3, TiO2, and CaO. J. Geophys. Res. Atmos. 106(D6), 5517–5529 (2001)

    Article  Google Scholar 

  • Polewski, K., Slawinkski, J., Pawlak, A.: The effect of UV and visible light radiation on natural humic acid: EPR spectral and kinetic studies. Geoderma 126, 291–299 (2005)

    Article  Google Scholar 

  • Pompe, S., Bubner, M., Schmeide, K., Heise, K.H., Bernard, G., Nitsche, H.: (Archiv-Ex) Influence of humic acids on the migration behavior of radioactive and non-radioactive substances under conditions close to nature: Synthesis, radiometric determination of functional groups, complexation. FZR-290, Wissenschaftlich-Technische Berichte (2000)

  • Ravishankara, A.R.: Science 276, 1058–1065 (1997)

    Article  Google Scholar 

  • Redmond, R.W., Gamlin, J.N.: A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 70, 391–475 (1999)

    Article  Google Scholar 

  • Reisinger, A.R.: Atmos. Environ. 34, 3865–3874 (2000)

    Article  Google Scholar 

  • Ren, X.R., Brune, W.H., Mao, J.Q., Mitchell, M.J., Lesher, R.L., Simpas, J.B., Metcalf, A.R., Schwab, J.J., Cai, C.X., Li, Y.Q., Demerjian, K.L., Felton, H.D., Boynton, G., Adams, A., Perry, J., He, Y., Zhou, X.L., Hou, J.: Behaviour of OH and HO2 in the winter atmosphere in New York City. Atmos. Environ. 40, S252–S263 (2006)

    Article  Google Scholar 

  • Ritchie, J.D., Perdue, E.M.: Geochim. Cosmochim. Acta 67, 85–96 (2003)

    Article  Google Scholar 

  • Robinson, A.L., Subramanian, R., Donahue, N.M., Bernardo-Bricker, A., Rogge, W.F.: Environ. Sci. Technol. 40, 7820–7827 (2006)

    Article  Google Scholar 

  • Sarwar, G., Roselle, S.J., Mathur, R., Appel, W., Dennis, R.L., Vogel, B.: A comparison of CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study. Atmos. Environ. 42(23), 5760–5770 (2008)

    Article  Google Scholar 

  • Scharko, N.K., Berke, A.E., Raff, J.D.: Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions. Environ. Sci. Technol. (2014). doi:10.1021/es503088x

    Google Scholar 

  • Shinozuka, T., Shibata, M., Yamaguchi, T.: Molecular weight characterization of humic substances by MALDI-TOF-MS. J. Mass Spectrom. Soc. Jpn. 52(1) (2004)

  • Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R.: Atmos. Environ. 33, 173 (1999)

    Article  Google Scholar 

  • Sörgel, M., Trebs, I., Serafimovich, A., Moravek, A., Held, A., Zetzsch, C.: Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos. Chem. Phys. 11, 841–855 (2011)

    Article  Google Scholar 

  • Sörgel, M., Trebs, I., Wu, D., Held, A.: A comparison of measured HONO uptake and release with calculated source strengths in a heterogeneous forest environment. Atmos. Chem. Phys. 15, 9237–9251 (2015)

    Article  Google Scholar 

  • Sosedova, Y., Rouvière, A., Bartels-Rausch, T., Ammann, M.: UVA/vis-induced nitrous acid formation on polyphenolic films exposed to gaseous NO2. Photochem. Photobiol. Sci. 10, 1680–1690 (2011)

    Article  Google Scholar 

  • Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., George, C.: Nature 440(7081), 195–198 (2006)

    Article  Google Scholar 

  • Stemmler, K., Ndour, M., Elshorbany, Y., Kleffmann, J., D’Anna, B., George, C., Bohn, B., Ammann, M.: Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. Atmos. Chem. Phys. 7, 4237–4248 (2007)

    Article  Google Scholar 

  • Stevenson, F.J.: Humus Chemistry. Wiley, New York (1982)

    Google Scholar 

  • Stevenson, F.J.: Humus Chemistry: Genesis, Composition, Reactions, 2nd edn. Wiley, New York (1994)

    Google Scholar 

  • Stutz, J., Alicke, B., Neftel, A.: Nitrous acid formation in the urban atmosphere: Gradient measurements of NO2 and HONO over grass in Milan, Italy. J. Geophys. Res. 107(D22), 8192 (2002)

    Article  Google Scholar 

  • Susic, M., Boto, K.G.: High-performance liquid chromatographic determination of humic acid in environmental samples at the nanogram level using fluorescence detection. J. Chromatogr. 482, 175–187 (1989)

    Article  Google Scholar 

  • Thorn, D. W. Folan, MacCarthy, P.: Characterization of the International Humic Substances Society Standard and Reference Fulvic and Humic Acids by Solution State Carbon-13 (13C) and Hydrogen-1 (1H) Nuclear Magnetic Resonance Spectrometry, U.S. Geological Survey, Water-Resources Investigations Report 89–4196, Denver, CO, p. 93 (1989)

  • Tipping, E., Woof, C.: Humic substances in acid organic soils: modelling their release to the soil solution in terms of humic charge. J. Soil Sci. 41, 575–586 (1990)

    Article  Google Scholar 

  • Tsikas, D.: Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction in the ʟ-arginine/nitric oxide area of research. J. Chromatogr.B 851(1–2), 51–70 (2007)

    Article  Google Scholar 

  • Veitel, H., Kromer, B., Mӧβner Platt, U.: Environ. Sci. Pollut. Res. 9, 17–26 (2002)

    Google Scholar 

  • Vidali, R., Remoundaki, E., Tsezos, M.: Photochemical alteration of humic substances by simulated solar light. Consequences on their binding characteristics: The case of copper. https://www.researchgate.net/public-ation/238094734. Accessed 10 Jan 2014 (2010)

  • Vogel, B., Vogel, H., Kleffman, J., Kurtenbach, R.: Measured and simulated vertical profiles of nitrous acid – Part II. Model simulations and indications for a photolytic source. Atmos. Environ. 37(21), 2957–2966 (2003)

    Article  Google Scholar 

  • von Wandruszka, R.: Humic acids: their detergent qualities and potential uses in pollution remediation. Geochem. Trans. 2 (2000)

  • Wall, K.J., Schiller, C.L., Harris, G.W.: Measurement of the HONO photodissociation constant. J. Atmos. Chem. 55, 31–54 (2006)

    Article  Google Scholar 

  • Weber, J.: Types of humus in soils. http://karnet.up.wroc.pl/%7Eweber/typy2.htm. Accessed 22 May 2011

  • Wershaw, R.L., Pickney, D.J.: Association and dissociation of humic acid fraction as a function of pH. U.S. Geol. Surv. Prof. Pap. 750-D 217–218 (1971). In: Thurman, E.M., Wershaw, R.L., Malcolm, R.L., Pinckney, D.J.: Molecular size of aquatic humic substances. Org. Geochem. 4, 27–35 (1982)

  • Wetzel, R.G., Hatcher, P.G., Bianchi, T.S.: Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40(8), 1369–1380 (1995)

    Article  Google Scholar 

  • Winer, A.M., Biermann, H.W.: Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast Air Basin. Res. Chem. Intermed. 20, 423–445 (1994)

    Article  Google Scholar 

  • Wong, K.W., Tsai, C., Lefer, B., Grossberg, N., Stutz, J.: Modeling of daytime HONO vertical gradients during SHARP 2009. Atmos. Chem. Phys. 13, 3587–3601 (2013)

    Article  Google Scholar 

  • Zepp, R.G., Faust, B.C., Holgné, J.: Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 26, 313–319 (1992)

    Article  Google Scholar 

  • Zhang, N., Zhou, X., Shepson, P.B., Gao, H., Alaghmand, M., Stirm, B.: Aircraft measurement of HONO vertical profiles over a forested region. Geophys. Res. Lett. 36, L15820 (2009)

    Google Scholar 

  • Zhou, X.L., Civerolo, K., Dai, H.P., Huang, G., Schwab, J., Demerjian, K.: Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State. J. Geophys. Res. 107(D21), 4590–4600 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Harris.

Additional information

The original version of this article was revised: Mistakes were introduced during the production process. Please refer to the Erratum article for the complete list of changes.

An erratum to this article is available at https://doi.org/10.1007/s10874-017-9367-7.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wall, K.J., Harris, G.W. Uptake of nitrogen dioxide (NO2) on acidic aqueous humic acid (HA) solutions as a missing daytime nitrous acid (HONO) surface source. J Atmos Chem 74, 283–321 (2017). https://doi.org/10.1007/s10874-016-9342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-016-9342-8

Keywords

Navigation