Skip to main content
Log in

Ozone and secondary organic aerosol formation from Ethylene-NO x -NaCl irradiations under different relative humidity conditions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The formation of ozone and secondary organic aerosol (SOA) from ethylene-NO x -NaCl(aerosol) irradiations was studied under various relative humidity (RH) conditions in an indoor smog chamber. In the absence of NaCl seed aerosols, SOA was hardly formed and peak O3 concentrations decreased linearly with increasing RH in ethylene irradiations. For the irradiations with NaCl seed aerosols, when RH <48 % (efflorescence relative humidity of NaCl), NaCl existed as solid phase and had little effect on peak O3 concentrations. The infrared spectra from sampled particles showed that SOA was rarely formed on solid NaCl particles. However, when NaCl was in the aqueous phase as RH ≥ 48 %, the peak O3 concentration was sharply reduced by over 20 % as compared to experiments without NaCl aerosol, and the absorption of NaNO3 in aerosols was coincidently increased with RH. Model results indicated that the heterogeneous reaction of N2O5 with aqueous NaCl aerosols was the main cause for the sharp decrease of O3. Besides, the absorptions from C-H, C = O, ONO2 and COO groups all greatly increased with RH. Our results show that SOA from ethylene-NOx irradiations was mainly formed through aqueous reactions. The yields of SOA from ethylene were measured to be 1.5 and 2.3 % at RH of 65 and 84 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam, M.S., Camredon, M., Rickard, A.R., Carr, T., Wyche, K.P., Hornsby, K.E., Monks, P.S., Bloss, W.J.: Total radical yields from tropospheric ethene ozonolysis. Phys. Chem. Chem. Phys. 13, 11002–11015 (2011)

    Article  Google Scholar 

  • Allen, D.T., Palen, E.J., Haimov, M.I., Hering, S.V.: Fourier transform infrared spectroscopy of aerosol collected in a low-pressure impactor (LPI/FTIR) - method development and field calibration. Aerosol Sci. Technol. 21, 325–342 (1994)

    Article  Google Scholar 

  • Anastasio, C., Newberg, J.T.: Sources and sinks of hydroxyl radical in sea-salt particles. J. Geophys. Res. 112, D10306 (2007). doi:10.1029/2006JD008061

    Article  Google Scholar 

  • Beardsley, R., Jang, M., Ori, B., Im, Y., Delcomyn, C.A., Witherspoon, N.: Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environ. Chem. 10, 167–177 (2013)

    Article  Google Scholar 

  • Behnke, W., Scheer, V., Zetzsch, C.: Formation of ClNO2 and HNO3 in the presence of N2O5 and wet pure NaCl- and wet mixed NaCl/Na2SO4-aerosol. J. Aerosol Sci. 24, 115–116 (1993)

    Article  Google Scholar 

  • Behnke, W., Zetzsch, C.: Smog chamber investigations of the influence of NaCl aerosol on the concentration of O3 in a photosmog system. In: Bojkov, R., Fabian, P. (eds.) Ozone in the Atmosphere. Prec. of the Quadrennial Ozone Symposium 1988 and Tropospheric Ozone Workshop, pp. 519–523. Deepak, Hampton (1989)

    Google Scholar 

  • Carter, W.P.L., Cocker, D.R., Fitz, D., Malkina, I.L.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 39, 7768–7788 (2005)

    Article  Google Scholar 

  • Chan, L.P., Chan, C.K.: Roles of the phase state and water content in ozonolysis of internal mixtures of maleic acid and ammonium sulfate particles. Aerosol Sci. Technol. 46, 781–793 (2012)

    Article  Google Scholar 

  • Clegg, S.L., Brimblecombe, P., Wexler, A.S.: A thermodynamic model of the system H+ - NH4 + - Na+ - SO4 2− - NO3 - Cl - H2O at 298.15 K. J. Phys. Chem. A 102, 2155–2171 (1998)

    Article  Google Scholar 

  • Day, D.A., Liu, S., Russell, L.M., Ziemann, P.J.: Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmos. Environ. 44, 1970–1979 (2010)

    Article  Google Scholar 

  • Du, L., Xu, Y.F., Ge, M.F., Jia, L., Yao, L., Wang, W.G.: Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone. Chem. Phys. Lett. 436, 36–40 (2007a)

    Article  Google Scholar 

  • Du, L., Xu, Y.F., Ge, M.F., Jia, L.: Rate constant for the reaction of ozone with diethyl sulfide. Atmos. Environ. 41, 7434–7439 (2007b)

    Article  Google Scholar 

  • Flocke, F., Atlas, E., Madronich, S., Shauffler, S.M., Aikin, K., Margitan, J.J., Bui, T.P.: Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms. Geophys. Res. Lett. 25(11), 1891–1894 (1998)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts Jr., J.N.: Tropospheric air pollution: ozone, airborne toxics. Polycyclic aromatic hydrocarbons, and particles. Science 276, 1045–1051 (1997)

    Article  Google Scholar 

  • Galloway, M.M., Chhabra, P.S., Chan, A.W.H., Surratt, J.D., Flagan, R.C., Seinfeld, J.H., Keutsch, F.N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 9, 3331–3345 (2009)

    Article  Google Scholar 

  • Hanson, D.R., Burkholder, J.B., Howard, C.J., Ravishankara, A.R.: Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces. J. Phys. Chem. 96, 4979–4985 (1992)

    Article  Google Scholar 

  • Hastings, W.P., Koehler, C.A., Bailey, E.L., De Haan, D.O.: Secondary organic aerosol formation by glyoxal hydration and oligomer formation: Humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 39, 8728–8735 (2005)

  • Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 39, 4351–4363 (2005)

    Article  Google Scholar 

  • Huang, X.H.H., Ip, H.S.S., Yu, J.Z.: Secondary organic aerosol formation from ethylene in the urban atmosphere of Hong Kong: a multiphase chemical modeling study. J. Geophys. Res. 116, D03206 (2011). doi:10.1029/2010JD014121

    Google Scholar 

  • Huang, M.Q., Hao, L.Q., Gu, X.J., Hu, C.J., Zhao, W.X., Wang, Z.Y., Fang, L., Zhang, W.J.: Effects of inorganic seed aerosols on the growth and chemical composition of secondary organic aerosol formed from OH-initiated oxidation of toluene. J. Atmos. Chem. 70, 151–164 (2013)

    Article  Google Scholar 

  • Hurley, M.D., Sokolov, O., Wallington, T.J., Takekawa, H., Karasawa, M., Klotz, B., Barnes, I., Becker, K.H.: Organic aerosol formation during the atmospheric degradation of toluene. Environ. Sci. Technol. 35, 1358–1366 (2001)

    Article  Google Scholar 

  • IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, Data Sheet VI.A2.6 HET_SALTS_6, http://iupac.pole-ether.fr. (2011). Accessed 1 June 2013

  • Jang, M., Czoschke, N.M., Lee, S., Kamens, R.M.: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298, 814–817 (2002)

    Article  Google Scholar 

  • Jang, M., Czoschke, N.M., Northcross, A.L.: Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. Environ. Sci. Technol. 39, 164–174 (2005)

    Article  Google Scholar 

  • Jenkin, M.E., Saunders, S.M., Pilling, M.J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 31, 81–104 (1997)

    Article  Google Scholar 

  • Jia, L., Xu, Y.F.: Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci. Technol. 48, 1–12 (2014)

    Article  Google Scholar 

  • Jia, L., Xu, Y.F., Shi, Y.Z.: Investigation of the ozone formation potential for ethanol using a smog chamber. Chin. Sci. Bull. 57, 4472–4481 (2012)

    Article  Google Scholar 

  • Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.S.H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., Baltensperger, U.: Identification of polymers as major components of atmospheric organic aerosols. Science 303, 1659–1662 (2004)

    Article  Google Scholar 

  • Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 288, 301–306 (2000)

    Article  Google Scholar 

  • Kroll, J.H., Ng, N.L., Murphy, S.M., Varutbangkul, V., Flagan, R.C., Seinfeld, J.H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 110, D23207 (2005). doi:10.1029/2005JD006004

    Article  Google Scholar 

  • Laskin, A., Gaspar, D.J., Wang, W., Hunt, S.W., Cowin, J.P., Colson, S.D., Finlayson-Pitts, B.J.: Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301, 340–344 (2003)

    Article  Google Scholar 

  • Laskin, A., Wang, H., Robertson, W.H., Cowin, J.P., Ezell, M.J., Finlayson-Pitts, B.J.: A new approach to determining gasparticle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. J. Phys. Chem. A 110, 10619–10627 (2006)

  • Leu, M.T., Leu, M.T., Timonen, R.S., Keyser, L.F., Yung, Y.L.: Heterogeneous reactions of HNO3(g) + NaCl(s) → HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) → ClNO2 + NaNO3(s). J. Phys. Chem. 99, 13203–13212 (1995)

    Article  Google Scholar 

  • Loza, C.L., Chan, A.W.H., Galloway, M.M., Keutsch, F.N., Flagan, R.C., Seinfeld, J.H.: Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 44, 5074–5078 (2010)

    Article  Google Scholar 

  • Lim, Y.B., Tan, Y., Perri, M.J., Seitzinger, S.P., Turpin, B.J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 10, 10521–10539 (2010)

    Article  Google Scholar 

  • Liu, C., Chu, B.W., Liu, Y.C., Ma, Q.X., Ma, J.Z., He, H., Li, J.H., Hao, J.M.: Effect of mineral dust on secondary organic aerosol yield and aerosol size in a-pinene/NOx photo-oxidation. Atmos. Environ. 77, 781–789 (2013)

    Article  Google Scholar 

  • Liu, S., Shilling, J.E., Song, C., Hiranuma, N., Zaveri, R.A., Russell, L.M.: Hydrolysis of organonitrate functional groups in aerosol particles. Aerosol Sci. Technol. 46, 1359–1369 (2012)

    Article  Google Scholar 

  • Lu, Z.F., Hao, J.M., Takekawab, H., Hu, L.H., Li, J.H.: Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. Atmos. Environ. 43, 897–904 (2009)

    Article  Google Scholar 

  • Neeb, P., Sauer, F., Horie, O., Moortgat, G.K.: Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour. Atmos. Environ. 31, 1417–1423 (1997)

    Article  Google Scholar 

  • Nguyen, T.B., Coggon, M.M., Flagan, R.C., Seinfeld, J.H.: Reactive uptake and photo-Fenton oxidation of glycolaldehyde in aerosol liquid water. Environ. Sci. Technol. 47, 4307–4316 (2013)

    Article  Google Scholar 

  • Niki, H., Marker, P.D., Savage, C.M., Breitenbach, L.P.: An FTIR study of mechanisms for the HO radical initiated oxidation of C2H4 in the presence of NO: detection of glycolaldehyde. Chem. Phys. Lett. 80, 499–503 (1981)

    Article  Google Scholar 

  • Orlando, J.J., Tyndall, G.S., Bilde, M., Ferronato, C., Wallington, T.J., Vereecken, L., Peeters, J.: Laboratory and theoretical study of the Oxy radicals in the OH- and Cl-initiated oxidation of ethene. J. Phys. Chem. 102, 8116–8123 (1998)

    Article  Google Scholar 

  • Ortiz-Montalvo, D.L., Lim, Y.B., Perri, M.J., Seitzinger, S.P., Turpin, B.J.: Volatility and yield of glycolaldehyde SOA formed through aqueous photochemistry and droplet evaporation. Aerosol Sci. Technol. 46, 1002–1014 (2012)

    Article  Google Scholar 

  • Oum, K.W., Lakin, M.J., DeHaan, D.O., Brauers, T., Finlayson-Pitts, B.J.: Formation of molecular chlorine from the photolysis of ozone and aqueous Sea salt particles. Science 279, 74–77 (1998)

    Article  Google Scholar 

  • Palen, E.J., Allen, D.T., Pandis, S.N., Paulson, S.E., Seinfeld, J.H., Flagan, R.C.: Fourier-transform infrared-analysis of aerosolformed in the photooxidation of isoprene and beta-pinene. Atmos. Environ. 26, 1239–1251 (1992)

    Article  Google Scholar 

  • Park, J.H., Ivanov, A.V., Molina, M.J.: Effect of relative humidity on OH uptake by surfaces of atmospheric importance. J. Phys. Chem. A 112, 6968–6977 (2008)

  • Perri, M.J., Lim, Y.B., Seitzinger, S.P., Turpin, B.J.: Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos. Environ. 44, 2658–2664 (2010)

    Article  Google Scholar 

  • Perri, M.J., Seitzinger, S., Turpin, B.J.: Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: laboratory experiments. Atmos. Environ. 43, 1487–1497 (2009)

    Article  Google Scholar 

  • Pilinis, C., Pandis, S.N., Seinfeld, J.H.: Sensitivity of direct climate forcing by atmospheric. Aerosols to aerosol size and composition. J. Geophys. Res. 100, 18739–18754 (1995)

    Article  Google Scholar 

  • Pope III, C.A., Dockery, D.W.: Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    Article  Google Scholar 

  • Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Calvé, S.L., Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry’s law equilibrium and aqueous phase photooxidation. Chemosphere 81, 312–7320 (2010)

    Article  Google Scholar 

  • Rossi, M.J.: Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003)

    Article  Google Scholar 

  • Roberts, J.M.: The atmospheric chemistry of organic nitrates. Atmos. Environ. A Gen. Top. 24, 243–287 (1990)

    Article  Google Scholar 

  • Russell, L.M., Bahadur, R., Ziemann, P.J.: Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. PNAS 108, 3516–3521 (2011)

    Article  Google Scholar 

  • Sakamoto, Y., Inomata, S., Hirokawa, J.: Oligomerization reaction of the criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis. J. Phys. Chem. A 117, 12912–12921 (2013)

    Article  Google Scholar 

  • Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development of the master chemical mechanism, MCM v3 (part a): tropospheric degradation of Non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003)

    Article  Google Scholar 

  • Sax, M., Zenobi, R., Baltensperger, U., Kalberer, M.: Time resolved infrared spectroscopic analysis of aerosol formed by photo-oxidation of 1,3,5-trimethylbenzene and α-pinene. Aerosol Sci. Technol. 39, 822–830 (2005)

    Article  Google Scholar 

  • Schwartz, J., Dockery, D.W., Neas, L.M.: Is daily mortality associated specifically with fine particles? J. Air Waste Manag. Assoc. 46, 927–939 (1996)

    Article  Google Scholar 

  • Schwartz, S.E.: Mass‐transport considerations pertinent to aqueous phase reactions of gases in liquid‐water clouds. In: Jaeschke, W. (ed.) Chemistry of Multiphase Atmospheric Systems, pp. 415–471. Springer, Berlin (1986)

    Chapter  Google Scholar 

  • Shi, Y.Z., Xu, Y.F., Jia, L.: Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295–351 K. Int. J. Chem. Kinet. 43, 238–246 (2011)

    Article  Google Scholar 

  • Stewart, D.J., Griffiths, P.T., Cox, R.A.: Reactive uptake coefficients for heterogeneous reaction of N2O5 with submicron aerosols of NaCl and natural Sea salt. Atmos. Chem. Phys. 4, 1381–1388 (2004)

    Article  Google Scholar 

  • Surrat, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., Seinfeld, J.H.: Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 41, 517–527 (2007)

    Article  Google Scholar 

  • Tang, I.N.: Phase transformation and growth of hygroscopic aerosols. In: Spurny, K.R. (ed.) Aerosol Chemical Processes in the Environment, pp. 61–80. CRC Press, Boca Raton, Florida (2000)

    Chapter  Google Scholar 

  • Takahama, S., Johnson, A., Russell, L.M.: Quantification of carboxylic and carbonyl functional groups in organic aerosol infrared absorbance spectra. Aerosol Sci. Technol. 47, 310–325 (2013)

    Article  Google Scholar 

  • Thornton, J.A., Abbatt, J.P.D.: N2O5 reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. J. Phys. Chem. A 109, 10004–10012 (2005)

    Article  Google Scholar 

  • Volkamer, R., Martini, F.S., Molina, L.T., Salcedo, D., Jimenez, J.L., Molina, M.J.: A missing sink for gas-phase glyoxal in Mexico city: formation of secondary organic aerosol. Geophys. Res. Lett. 34, L19807 (2007). doi:10.1029/2007GL030752

    Article  Google Scholar 

  • Volkamer, R., Ziemann, P.J., Molina, M.J.: Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 9, 1907–1928 (2009)

    Article  Google Scholar 

  • Wang, X., Liu, T., Bernard, F., Ding, X., Wen, S., Zhang, Y., Zhang, Z., He, Q., Lü, S., Chen, J., Saunders, S., Yu, J.: Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 7, 301–313 (2014)

    Article  Google Scholar 

  • Warneck, P.: Chemistry of the Natural Atmosphere. Academic, San Diego (1988)

    Google Scholar 

  • Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 37, 2423–2427 (2003)

    Article  Google Scholar 

  • Warren, B., Malloy, Q.G.J., Yee, L.D., David, R.C.: Secondary organic aerosol formation from cyclohexene ozonolysis in the presence of water vapor and dissolved salts. Atmos. Environ. 43, 1789–1795 (2009)

    Article  Google Scholar 

  • Xu, Y.F., Jia, L., Ge, M.F., Du, L., Wang, G.C., Wang, D.X.: A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Chin. Sci. Bull. 51, 1–5 (2006)

  • Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E.C., Tie, X., Molina, L.T., Molina, M.J.: Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004)

    Article  Google Scholar 

  • Zhang, X., Cappa, C.D., Jathar, S.H., McVay, R.C., Ensberg, J.J., Kleeman, M.J., Seinfeld, J.H.: Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 111, 5802–5807 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB05010104) and the National Natural Science Foundation of China (No. 41105086 and No. 41375129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Xu, Y. Ozone and secondary organic aerosol formation from Ethylene-NO x -NaCl irradiations under different relative humidity conditions. J Atmos Chem 73, 81–100 (2016). https://doi.org/10.1007/s10874-015-9317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-015-9317-1

Keywords

Navigation