Skip to main content

Ozone and secondary organic aerosol formation from Ethylene-NO x -NaCl irradiations under different relative humidity conditions

Abstract

The formation of ozone and secondary organic aerosol (SOA) from ethylene-NO x -NaCl(aerosol) irradiations was studied under various relative humidity (RH) conditions in an indoor smog chamber. In the absence of NaCl seed aerosols, SOA was hardly formed and peak O3 concentrations decreased linearly with increasing RH in ethylene irradiations. For the irradiations with NaCl seed aerosols, when RH <48 % (efflorescence relative humidity of NaCl), NaCl existed as solid phase and had little effect on peak O3 concentrations. The infrared spectra from sampled particles showed that SOA was rarely formed on solid NaCl particles. However, when NaCl was in the aqueous phase as RH ≥ 48 %, the peak O3 concentration was sharply reduced by over 20 % as compared to experiments without NaCl aerosol, and the absorption of NaNO3 in aerosols was coincidently increased with RH. Model results indicated that the heterogeneous reaction of N2O5 with aqueous NaCl aerosols was the main cause for the sharp decrease of O3. Besides, the absorptions from C-H, C = O, ONO2 and COO groups all greatly increased with RH. Our results show that SOA from ethylene-NOx irradiations was mainly formed through aqueous reactions. The yields of SOA from ethylene were measured to be 1.5 and 2.3 % at RH of 65 and 84 %, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alam, M.S., Camredon, M., Rickard, A.R., Carr, T., Wyche, K.P., Hornsby, K.E., Monks, P.S., Bloss, W.J.: Total radical yields from tropospheric ethene ozonolysis. Phys. Chem. Chem. Phys. 13, 11002–11015 (2011)

    Article  Google Scholar 

  2. Allen, D.T., Palen, E.J., Haimov, M.I., Hering, S.V.: Fourier transform infrared spectroscopy of aerosol collected in a low-pressure impactor (LPI/FTIR) - method development and field calibration. Aerosol Sci. Technol. 21, 325–342 (1994)

    Article  Google Scholar 

  3. Anastasio, C., Newberg, J.T.: Sources and sinks of hydroxyl radical in sea-salt particles. J. Geophys. Res. 112, D10306 (2007). doi:10.1029/2006JD008061

    Article  Google Scholar 

  4. Beardsley, R., Jang, M., Ori, B., Im, Y., Delcomyn, C.A., Witherspoon, N.: Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environ. Chem. 10, 167–177 (2013)

    Article  Google Scholar 

  5. Behnke, W., Scheer, V., Zetzsch, C.: Formation of ClNO2 and HNO3 in the presence of N2O5 and wet pure NaCl- and wet mixed NaCl/Na2SO4-aerosol. J. Aerosol Sci. 24, 115–116 (1993)

    Article  Google Scholar 

  6. Behnke, W., Zetzsch, C.: Smog chamber investigations of the influence of NaCl aerosol on the concentration of O3 in a photosmog system. In: Bojkov, R., Fabian, P. (eds.) Ozone in the Atmosphere. Prec. of the Quadrennial Ozone Symposium 1988 and Tropospheric Ozone Workshop, pp. 519–523. Deepak, Hampton (1989)

    Google Scholar 

  7. Carter, W.P.L., Cocker, D.R., Fitz, D., Malkina, I.L.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 39, 7768–7788 (2005)

    Article  Google Scholar 

  8. Chan, L.P., Chan, C.K.: Roles of the phase state and water content in ozonolysis of internal mixtures of maleic acid and ammonium sulfate particles. Aerosol Sci. Technol. 46, 781–793 (2012)

    Article  Google Scholar 

  9. Clegg, S.L., Brimblecombe, P., Wexler, A.S.: A thermodynamic model of the system H+ - NH4 + - Na+ - SO4 2− - NO3 - Cl - H2O at 298.15 K. J. Phys. Chem. A 102, 2155–2171 (1998)

    Article  Google Scholar 

  10. Day, D.A., Liu, S., Russell, L.M., Ziemann, P.J.: Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmos. Environ. 44, 1970–1979 (2010)

    Article  Google Scholar 

  11. Du, L., Xu, Y.F., Ge, M.F., Jia, L., Yao, L., Wang, W.G.: Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone. Chem. Phys. Lett. 436, 36–40 (2007a)

    Article  Google Scholar 

  12. Du, L., Xu, Y.F., Ge, M.F., Jia, L.: Rate constant for the reaction of ozone with diethyl sulfide. Atmos. Environ. 41, 7434–7439 (2007b)

    Article  Google Scholar 

  13. Flocke, F., Atlas, E., Madronich, S., Shauffler, S.M., Aikin, K., Margitan, J.J., Bui, T.P.: Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms. Geophys. Res. Lett. 25(11), 1891–1894 (1998)

    Article  Google Scholar 

  14. Finlayson-Pitts, B.J., Pitts Jr., J.N.: Tropospheric air pollution: ozone, airborne toxics. Polycyclic aromatic hydrocarbons, and particles. Science 276, 1045–1051 (1997)

    Article  Google Scholar 

  15. Galloway, M.M., Chhabra, P.S., Chan, A.W.H., Surratt, J.D., Flagan, R.C., Seinfeld, J.H., Keutsch, F.N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 9, 3331–3345 (2009)

    Article  Google Scholar 

  16. Hanson, D.R., Burkholder, J.B., Howard, C.J., Ravishankara, A.R.: Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces. J. Phys. Chem. 96, 4979–4985 (1992)

    Article  Google Scholar 

  17. Hastings, W.P., Koehler, C.A., Bailey, E.L., De Haan, D.O.: Secondary organic aerosol formation by glyoxal hydration and oligomer formation: Humidity effects and equilibrium shifts during analysis. Environ. Sci. Technol. 39, 8728–8735 (2005)

  18. Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 39, 4351–4363 (2005)

    Article  Google Scholar 

  19. Huang, X.H.H., Ip, H.S.S., Yu, J.Z.: Secondary organic aerosol formation from ethylene in the urban atmosphere of Hong Kong: a multiphase chemical modeling study. J. Geophys. Res. 116, D03206 (2011). doi:10.1029/2010JD014121

    Google Scholar 

  20. Huang, M.Q., Hao, L.Q., Gu, X.J., Hu, C.J., Zhao, W.X., Wang, Z.Y., Fang, L., Zhang, W.J.: Effects of inorganic seed aerosols on the growth and chemical composition of secondary organic aerosol formed from OH-initiated oxidation of toluene. J. Atmos. Chem. 70, 151–164 (2013)

    Article  Google Scholar 

  21. Hurley, M.D., Sokolov, O., Wallington, T.J., Takekawa, H., Karasawa, M., Klotz, B., Barnes, I., Becker, K.H.: Organic aerosol formation during the atmospheric degradation of toluene. Environ. Sci. Technol. 35, 1358–1366 (2001)

    Article  Google Scholar 

  22. IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, Data Sheet VI.A2.6 HET_SALTS_6, http://iupac.pole-ether.fr. (2011). Accessed 1 June 2013

  23. Jang, M., Czoschke, N.M., Lee, S., Kamens, R.M.: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298, 814–817 (2002)

    Article  Google Scholar 

  24. Jang, M., Czoschke, N.M., Northcross, A.L.: Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. Environ. Sci. Technol. 39, 164–174 (2005)

    Article  Google Scholar 

  25. Jenkin, M.E., Saunders, S.M., Pilling, M.J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 31, 81–104 (1997)

    Article  Google Scholar 

  26. Jia, L., Xu, Y.F.: Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene. Aerosol Sci. Technol. 48, 1–12 (2014)

    Article  Google Scholar 

  27. Jia, L., Xu, Y.F., Shi, Y.Z.: Investigation of the ozone formation potential for ethanol using a smog chamber. Chin. Sci. Bull. 57, 4472–4481 (2012)

    Article  Google Scholar 

  28. Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.S.H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., Baltensperger, U.: Identification of polymers as major components of atmospheric organic aerosols. Science 303, 1659–1662 (2004)

    Article  Google Scholar 

  29. Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 288, 301–306 (2000)

    Article  Google Scholar 

  30. Kroll, J.H., Ng, N.L., Murphy, S.M., Varutbangkul, V., Flagan, R.C., Seinfeld, J.H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 110, D23207 (2005). doi:10.1029/2005JD006004

    Article  Google Scholar 

  31. Laskin, A., Gaspar, D.J., Wang, W., Hunt, S.W., Cowin, J.P., Colson, S.D., Finlayson-Pitts, B.J.: Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301, 340–344 (2003)

    Article  Google Scholar 

  32. Laskin, A., Wang, H., Robertson, W.H., Cowin, J.P., Ezell, M.J., Finlayson-Pitts, B.J.: A new approach to determining gasparticle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. J. Phys. Chem. A 110, 10619–10627 (2006)

  33. Leu, M.T., Leu, M.T., Timonen, R.S., Keyser, L.F., Yung, Y.L.: Heterogeneous reactions of HNO3(g) + NaCl(s) → HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) → ClNO2 + NaNO3(s). J. Phys. Chem. 99, 13203–13212 (1995)

    Article  Google Scholar 

  34. Loza, C.L., Chan, A.W.H., Galloway, M.M., Keutsch, F.N., Flagan, R.C., Seinfeld, J.H.: Characterization of vapor wall loss in laboratory chambers. Environ. Sci. Technol. 44, 5074–5078 (2010)

    Article  Google Scholar 

  35. Lim, Y.B., Tan, Y., Perri, M.J., Seitzinger, S.P., Turpin, B.J.: Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 10, 10521–10539 (2010)

    Article  Google Scholar 

  36. Liu, C., Chu, B.W., Liu, Y.C., Ma, Q.X., Ma, J.Z., He, H., Li, J.H., Hao, J.M.: Effect of mineral dust on secondary organic aerosol yield and aerosol size in a-pinene/NOx photo-oxidation. Atmos. Environ. 77, 781–789 (2013)

    Article  Google Scholar 

  37. Liu, S., Shilling, J.E., Song, C., Hiranuma, N., Zaveri, R.A., Russell, L.M.: Hydrolysis of organonitrate functional groups in aerosol particles. Aerosol Sci. Technol. 46, 1359–1369 (2012)

    Article  Google Scholar 

  38. Lu, Z.F., Hao, J.M., Takekawab, H., Hu, L.H., Li, J.H.: Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. Atmos. Environ. 43, 897–904 (2009)

    Article  Google Scholar 

  39. Neeb, P., Sauer, F., Horie, O., Moortgat, G.K.: Formation of hydroxymethyl hydroperoxide and formic acid in alkene ozonolysis in the presence of water vapour. Atmos. Environ. 31, 1417–1423 (1997)

    Article  Google Scholar 

  40. Nguyen, T.B., Coggon, M.M., Flagan, R.C., Seinfeld, J.H.: Reactive uptake and photo-Fenton oxidation of glycolaldehyde in aerosol liquid water. Environ. Sci. Technol. 47, 4307–4316 (2013)

    Article  Google Scholar 

  41. Niki, H., Marker, P.D., Savage, C.M., Breitenbach, L.P.: An FTIR study of mechanisms for the HO radical initiated oxidation of C2H4 in the presence of NO: detection of glycolaldehyde. Chem. Phys. Lett. 80, 499–503 (1981)

    Article  Google Scholar 

  42. Orlando, J.J., Tyndall, G.S., Bilde, M., Ferronato, C., Wallington, T.J., Vereecken, L., Peeters, J.: Laboratory and theoretical study of the Oxy radicals in the OH- and Cl-initiated oxidation of ethene. J. Phys. Chem. 102, 8116–8123 (1998)

    Article  Google Scholar 

  43. Ortiz-Montalvo, D.L., Lim, Y.B., Perri, M.J., Seitzinger, S.P., Turpin, B.J.: Volatility and yield of glycolaldehyde SOA formed through aqueous photochemistry and droplet evaporation. Aerosol Sci. Technol. 46, 1002–1014 (2012)

    Article  Google Scholar 

  44. Oum, K.W., Lakin, M.J., DeHaan, D.O., Brauers, T., Finlayson-Pitts, B.J.: Formation of molecular chlorine from the photolysis of ozone and aqueous Sea salt particles. Science 279, 74–77 (1998)

    Article  Google Scholar 

  45. Palen, E.J., Allen, D.T., Pandis, S.N., Paulson, S.E., Seinfeld, J.H., Flagan, R.C.: Fourier-transform infrared-analysis of aerosolformed in the photooxidation of isoprene and beta-pinene. Atmos. Environ. 26, 1239–1251 (1992)

    Article  Google Scholar 

  46. Park, J.H., Ivanov, A.V., Molina, M.J.: Effect of relative humidity on OH uptake by surfaces of atmospheric importance. J. Phys. Chem. A 112, 6968–6977 (2008)

  47. Perri, M.J., Lim, Y.B., Seitzinger, S.P., Turpin, B.J.: Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos. Environ. 44, 2658–2664 (2010)

    Article  Google Scholar 

  48. Perri, M.J., Seitzinger, S., Turpin, B.J.: Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: laboratory experiments. Atmos. Environ. 43, 1487–1497 (2009)

    Article  Google Scholar 

  49. Pilinis, C., Pandis, S.N., Seinfeld, J.H.: Sensitivity of direct climate forcing by atmospheric. Aerosols to aerosol size and composition. J. Geophys. Res. 100, 18739–18754 (1995)

    Article  Google Scholar 

  50. Pope III, C.A., Dockery, D.W.: Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)

    Article  Google Scholar 

  51. Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Calvé, S.L., Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry’s law equilibrium and aqueous phase photooxidation. Chemosphere 81, 312–7320 (2010)

    Article  Google Scholar 

  52. Rossi, M.J.: Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003)

    Article  Google Scholar 

  53. Roberts, J.M.: The atmospheric chemistry of organic nitrates. Atmos. Environ. A Gen. Top. 24, 243–287 (1990)

    Article  Google Scholar 

  54. Russell, L.M., Bahadur, R., Ziemann, P.J.: Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles. PNAS 108, 3516–3521 (2011)

    Article  Google Scholar 

  55. Sakamoto, Y., Inomata, S., Hirokawa, J.: Oligomerization reaction of the criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis. J. Phys. Chem. A 117, 12912–12921 (2013)

    Article  Google Scholar 

  56. Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development of the master chemical mechanism, MCM v3 (part a): tropospheric degradation of Non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003)

    Article  Google Scholar 

  57. Sax, M., Zenobi, R., Baltensperger, U., Kalberer, M.: Time resolved infrared spectroscopic analysis of aerosol formed by photo-oxidation of 1,3,5-trimethylbenzene and α-pinene. Aerosol Sci. Technol. 39, 822–830 (2005)

    Article  Google Scholar 

  58. Schwartz, J., Dockery, D.W., Neas, L.M.: Is daily mortality associated specifically with fine particles? J. Air Waste Manag. Assoc. 46, 927–939 (1996)

    Article  Google Scholar 

  59. Schwartz, S.E.: Mass‐transport considerations pertinent to aqueous phase reactions of gases in liquid‐water clouds. In: Jaeschke, W. (ed.) Chemistry of Multiphase Atmospheric Systems, pp. 415–471. Springer, Berlin (1986)

    Chapter  Google Scholar 

  60. Shi, Y.Z., Xu, Y.F., Jia, L.: Arrhenius parameters for the gas-phase reactions of O3 with two butenes and two methyl-substituted butenes over the temperature range of 295–351 K. Int. J. Chem. Kinet. 43, 238–246 (2011)

    Article  Google Scholar 

  61. Stewart, D.J., Griffiths, P.T., Cox, R.A.: Reactive uptake coefficients for heterogeneous reaction of N2O5 with submicron aerosols of NaCl and natural Sea salt. Atmos. Chem. Phys. 4, 1381–1388 (2004)

    Article  Google Scholar 

  62. Surrat, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., Seinfeld, J.H.: Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 41, 517–527 (2007)

    Article  Google Scholar 

  63. Tang, I.N.: Phase transformation and growth of hygroscopic aerosols. In: Spurny, K.R. (ed.) Aerosol Chemical Processes in the Environment, pp. 61–80. CRC Press, Boca Raton, Florida (2000)

    Chapter  Google Scholar 

  64. Takahama, S., Johnson, A., Russell, L.M.: Quantification of carboxylic and carbonyl functional groups in organic aerosol infrared absorbance spectra. Aerosol Sci. Technol. 47, 310–325 (2013)

    Article  Google Scholar 

  65. Thornton, J.A., Abbatt, J.P.D.: N2O5 reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. J. Phys. Chem. A 109, 10004–10012 (2005)

    Article  Google Scholar 

  66. Volkamer, R., Martini, F.S., Molina, L.T., Salcedo, D., Jimenez, J.L., Molina, M.J.: A missing sink for gas-phase glyoxal in Mexico city: formation of secondary organic aerosol. Geophys. Res. Lett. 34, L19807 (2007). doi:10.1029/2007GL030752

    Article  Google Scholar 

  67. Volkamer, R., Ziemann, P.J., Molina, M.J.: Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 9, 1907–1928 (2009)

    Article  Google Scholar 

  68. Wang, X., Liu, T., Bernard, F., Ding, X., Wen, S., Zhang, Y., Zhang, Z., He, Q., Lü, S., Chen, J., Saunders, S., Yu, J.: Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 7, 301–313 (2014)

    Article  Google Scholar 

  69. Warneck, P.: Chemistry of the Natural Atmosphere. Academic, San Diego (1988)

    Google Scholar 

  70. Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 37, 2423–2427 (2003)

    Article  Google Scholar 

  71. Warren, B., Malloy, Q.G.J., Yee, L.D., David, R.C.: Secondary organic aerosol formation from cyclohexene ozonolysis in the presence of water vapor and dissolved salts. Atmos. Environ. 43, 1789–1795 (2009)

    Article  Google Scholar 

  72. Xu, Y.F., Jia, L., Ge, M.F., Du, L., Wang, G.C., Wang, D.X.: A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Chin. Sci. Bull. 51, 1–5 (2006)

  73. Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E.C., Tie, X., Molina, L.T., Molina, M.J.: Atmospheric new particle formation enhanced by organic acids. Science 304, 1487–1490 (2004)

    Article  Google Scholar 

  74. Zhang, X., Cappa, C.D., Jathar, S.H., McVay, R.C., Ensberg, J.J., Kleeman, M.J., Seinfeld, J.H.: Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc. Natl. Acad. Sci. U. S. A. 111, 5802–5807 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB05010104) and the National Natural Science Foundation of China (No. 41105086 and No. 41375129).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongfu Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20.7 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Xu, Y. Ozone and secondary organic aerosol formation from Ethylene-NO x -NaCl irradiations under different relative humidity conditions. J Atmos Chem 73, 81–100 (2016). https://doi.org/10.1007/s10874-015-9317-1

Download citation

Keywords

  • Ethylene
  • Ozone
  • Secondary organic aerosol
  • NaCl seed aerosol
  • Relative humidity