Journal of Atmospheric Chemistry

, Volume 71, Issue 2, pp 157–174 | Cite as

Chemical composition of rainwater at Lijiang on the Southeast Tibetan Plateau: influences from various air mass sources

  • Ningning ZhangEmail author
  • Junji Cao
  • Yuanqing He
  • Shun Xiao


Daily rainwater samples collected at Lijiang in 2009 were analyzed for pH, electrical conductivity, major ion (SO4 2−, Cl, NO3 , Na+, Ca2+, Mg2+, and NH4 +) concentrations, and δ18O. The rainwater was alkaline with the volume-weighted mean pH of 6.34 (range: 5.71 to 7.11). Ion concentrations and δ18O during the pre-monsoon period were higher than in the monsoon. Air mass trajectories indicated that water vapor from South Asia was polluted with biomass burning emissions during the pre-monsoon. Precipitation during the monsoon was mainly transported by flow from the Bay of Bengal, and it showed high sea salt ion concentrations. Some precipitation brought by southwest monsoon originated from Burma; it was characterized by low δ18O and low sea salt, indicating that the water vapor from the region was mainly recycled monsoon precipitation. Water vapor from South China contained large quantities of SO4 2−, NO3 , and NH4 +. Throughout the study, Ca2+ was the main neutralizing agent. Positive matrix factorization analysis indicated that crustal dust sources contributed the following percentages of the ions Ca2+ 85 %, Mg2+ 75 %, K+ 61 %, NO3 32 % and SO4 2− 21 %. Anthropogenic sources accounted for 79 %, 68 %, and 76 % of the SO4 2−, NO3 and NH4 +, respectively; and approximately 93 %, 99 %, and 37 % of the Cl, Na+, and K+ were from a sea salt source.


Alkaline rain Air mass Neutralization PMF analysis 



This work was supported by the Natural Science Foundation of China (NSFC40801028, 40925009), the West Light Foundation of Chinese Academy of Sciences, projects from the Chinese Academy of Sciences (No O929011018, KZCX2-YW-BR-10 and KZCX2-YW-148), the Ministry of Science & Technology (2012BAH31B03, 2009IM030100) and Meteorological Innovative Research Project of Baoji Meteorological Bureau (No.T2012-01). We sincerely thank the staffs at the Yulong Snow Mountain glacial and environment observation station who were instrumental in the field work.


  1. Al-Momani, I.F., Tuncel, S., Eler, U., Ortel, E., Sirin, G., Tuncel, G.: Major ion composition of wet and dry deposition in the eastern Mediterranean basin. Sci. Total Environ. 164, 75–85 (1995)CrossRefGoogle Scholar
  2. Araguás-Araguás, L., Froehlich, K., Rozanski, K.: Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. 103(D22) (1998). doi: 10.1029/98JD02582
  3. Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., Ray, B.J.: Relationships among aerosol constituents from Asia and the North Pacific during Pem-West A. J. Geophys. Res. 101, 2011–2023 (1996)CrossRefGoogle Scholar
  4. Cao, Y., Wang, S., Zhang, G., Luo, J., Lu, S.: Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China. Atmos. Res. 94, 462–469 (2009)CrossRefGoogle Scholar
  5. Cowling, E.B.: Acid precipitation in historical perspective. Environ. Sci. Technol. 16(2), 110–123 (1982)CrossRefGoogle Scholar
  6. Ding, G., Xu, X., Fang, X., Jin, S., Xu, X., Tang, J., Liu, Q., Wang, S., Wang, W.: The actuality and developing trend of acid rain in China. Chin. Sci. Bull. 42(2), 169–173 (1997)CrossRefGoogle Scholar
  7. Galloway, J.N., Likens, G.E., Edgerton, E.S.: Acid precipitation in the northeastern United States: pH and acidity. Science 194, 722–724 (1976)CrossRefGoogle Scholar
  8. Heuer, K., Tonnessen, K.A., Ingersill, G.P.: Comparison of precipitation chemistry in the Central Rocky Mountains, Colorado, USA. Atmos. Environ. 34, 1713–1722 (2000)CrossRefGoogle Scholar
  9. Honório, B.A.D., Horbe, A.M.C., Seyler, P.: Chemical composition of rainwater in western Amazonia –Brazil. Atmos. Res. 98, 416–425 (2010)CrossRefGoogle Scholar
  10. Huang, X.F., Li, X., He, L.Y., Feng, N., Hu, M., Niu, Y.W., Zeng, L.W.: 5-Year study of rainwater chemistry in a coastal mega-city in South China. Atmos. Res. 97, 185–193 (2010)CrossRefGoogle Scholar
  11. Huston, R., Chan, Y.C., Chapman, H., Gardner, T., Shaw, G.: Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res. 46, 1121–1132 (2012)CrossRefGoogle Scholar
  12. Ito, M., Mitchell, M., Driscoll, C.T.: Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmos. Environ. 36, 1051–1062 (2002)CrossRefGoogle Scholar
  13. Juntto, S., Paatero, P.: Analysis of daily precipitation data by positive matrix factorization. Environmetrics 5, 127–144 (1994)CrossRefGoogle Scholar
  14. Kaya, G., Tuncel, G.: Trace element and major ion composition of wet and dry deposition in Ankara, Turkey. Atmos. Environ. 31, 3985–3998 (1997)CrossRefGoogle Scholar
  15. Khemani, L.T., Momin, G.A., Naik, M.S., Prakasarao, P.S., Kumar, R., Ramanamurty, B.H.V.: Impact of alkaline particulates on pH of rain water in India. Water Air Soil Pollut. 25, 365–376 (1985)CrossRefGoogle Scholar
  16. Khwaja, H.A., Husain, L.: Chemical characterization of acid precipitation in Albany, New York. Atmos. Environ. 24A, 1869–1882 (1990)CrossRefGoogle Scholar
  17. Kitayama, K., Murao, N., Hara, H.: PMF analysis of impacts of SO2 from Miyakejima and Asian Continent on precipitation sulfate in Japan. Atmos. Environ. 44, 95–105 (2010)CrossRefGoogle Scholar
  18. Lee, J.E., Fung, I.: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Process. 22(1), 1–8 (2008)Google Scholar
  19. Lee, B.K., Hong, S.H., Lee, D.S.: Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula. Atmos. Environ. 34, 563–575 (2000)CrossRefGoogle Scholar
  20. Li, Z.Q., Ross, E., Thompson, E.M., Wang, F.T., Dong, Z.B., You, X.N., Li, H.L., Li, C.J., Zhu, Y.M.: Seasonal variability of ionic concentrations in surface snow and elution processes in snow-firn packs at the PGPI site on Glacier No. 1 in eastern Tianshan, China. Ann. Glaciol. 43, 250–256 (2006)CrossRefGoogle Scholar
  21. Li, C.L., Kang, S.C., Zhang, Q.G., Kaspari, S.: Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmos. Res. 85, 351–360 (2007)CrossRefGoogle Scholar
  22. Li, Y., Yu, X.L., Cheng, H.B., Lin, W.L., Tang, J., Wang, S.F.: Chemical characteristics of precipitation at three Chinese regional background stations from 2006 to 2007. Atmos. Res. 96, 173–183 (2010)CrossRefGoogle Scholar
  23. Liu, J.Q., Keene, W.C., Wu, G.P.: Study of precipitation background value in Lijiang, China. China Environ. Sci. 13(4), 246–251 (1993)Google Scholar
  24. Lu, X.W., Li, L.Y., Li, N., Yang, G., Luo, D.C., Chen, J.H.: Chemical characteristics of spring rainwater of Xi’an city, N W China. Atmos. Environ. 45, 5058–5063 (2011)CrossRefGoogle Scholar
  25. Marquardt, W., Brüggemann, E., Auel, R., Herrmann, H., Möller, D.: Trends of pollution in rain over East Germany caused by changing emissions. Tellus 53B(5), 529–545 (2001)CrossRefGoogle Scholar
  26. Migliavacca, D., Teixeira, E.C., Pires, M., Fachel, J.: Study of chemical elements in atmospheric precipitation in South Brazil. Atmos. Environ. 38(11), 1641–1656 (2004)CrossRefGoogle Scholar
  27. Norris, G.A., Vedantham, R., Wade, K., Brown, S., Prouty, J., Foley, C.: EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/108 (2008)Google Scholar
  28. Ozsoy, T., Saydam, A.C.: Acidic and alkaline precipitation in the Cilician Basin, north-eastern Mediterranean Sea. Sci. Total Environ. 253, 93–109 (2000)CrossRefGoogle Scholar
  29. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)CrossRefGoogle Scholar
  30. Pang, H.X., He, Y.Q., Lu, A.G., Zhao, J.D., Ning, B.Y., Yuan, L.L., Song, B.: Synoptic-scale variation of δ18O in summer monsoon rainfall at Lijiang, China. Chin. Sci. Bull. 51, 2897–2904 (2006)CrossRefGoogle Scholar
  31. Pang, H.X., He, Y.Q., Hou, S.G., Zhang, N.N.: Changes in ionic and oxygen isotopic composition of the snow-firn pack at Baishui Glacier No. 1, southeastern Tibetan Plateau. Environ. Earth Sci. 67, 2345–2358 (2012)CrossRefGoogle Scholar
  32. Possanzini, M., Buttini, P., Dipalo, V.: Characterization of a rural area in terms of dry and wet deposition. Sci. Total Environ. 74, 111–120 (1988)CrossRefGoogle Scholar
  33. Safai, P.D., Rao, P.S.P., Momin, G.A., Ali, K., Chate, D.M., Praveen, P.S.: Chemical composition of precipitation during 1984–2002 at Pune, India. Atmos. Environ. 38, 1705–1714 (2004)CrossRefGoogle Scholar
  34. Sanusi, A., Wortham, H., Millet, M., Mirabel, P.: Chemical composition of rainwater in eastern France. Atmos. Environ. 30, 59–71 (1996)CrossRefGoogle Scholar
  35. Shrestha, A.B..., Wake, C.P., Dibb, J.E., Whitlow, S.I.: Aerosol and precipitation chemistry at a remote Himalayan site in Nepal. Aerosol Sci. Technol. 36, 441–456 (2002)CrossRefGoogle Scholar
  36. Smirnioudi, V.N., Siskos, P.A.: Chemical composition of wet and dust deposition in Athens, Greece, in relation to meteorological conditions. Atmos. Environ. 26B, 483–490 (1992)CrossRefGoogle Scholar
  37. Talbot, R.W., Vijgen, A.S., Harriss, R.C.: Soluble species in the Arctic summer troposphere: acidic gases, aerosols and precipitation. J. Geophys. Res. 97(16), 531–543 (1992)Google Scholar
  38. Tang, J., Xue, H.S., Yu, X.L., Cheng, H.B., Xu, X.B., Zhang, X.C., Ji, J.: The preliminary study on chemical characteristics of precipitation at Mt. Waliguan. Acta Sci. Circumst. 20(4), 420–425 (2000)Google Scholar
  39. Tang, A., Zhuang, G., Wang, Y., Yuan, H., Sun, Y.: The chemistry of precipitation and its relation to aerosol in Beijing. Atmos. Environ. 39, 3397–3406 (2005)CrossRefGoogle Scholar
  40. Tian, L.D., Yao, T.D., Numaguti, A., Duan, K.Q.: Relation between stable isotope in monsoon precipitation in southern Tibetan Plateau and moisture transport history. Science in China Series D: Earth Sci. 44(1), 267–274 (2001)Google Scholar
  41. Tiwari, S., Chate, D.M., Bisht, D.S., Srivastava, M.K., Padmanabhamurty, B.: Rainwater chemistry in the North Western Himalayan Region, India. Atmos. Res. 104–105, 124–138 (2012)Google Scholar
  42. Topcu, S., Incecik, S., Atimtay, A.: Chemical composition of rainwater at EMEP station in Ankara, Turkey. Atmos. Res. 65, 77–92 (2002)CrossRefGoogle Scholar
  43. Tu, Y., Wang, X.J., Feng, Y.K.: Preliminary discussion on pollution characteristics and formation cause of acid rain in Panzhihua City. Sichuan Environ. 23(5), 36–39 (2004)Google Scholar
  44. Wai, K.M., Lin, N.H., Wang, S.H., Dokiya, Y.: Rainwater chemistry at a high-altitude station, Mt. Lulin, Taiwan: comparison with a background station, Mt. Fuji. J Geophys Res 113, Do6305 (2008). doi: 10.1029/2006JD008248
  45. Wang, W.: Study on the origin of acid rain formation in China. China Environ. Sci. 14(5), 323–329 (1994)Google Scholar
  46. Wang, H., Han, G.L.: Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos. Res. 99, 190–196 (2011)Google Scholar
  47. Wang, C.F., He, Y.Q., Zhang, N.N., Li, Z.X., Du, J.K., Niu, G.: Chemical characteristics of rainwater in different regions of Lijiang- Yulong snow mountain. Res. Environ. Sci. 25(1), 18–23 (2012)Google Scholar
  48. Wu, Q.X., Han, G.L., Tao, F.X., Tang, T.: Chemical composition of rainwater in a karstic agricultural area, Southwest China: the impact of urbanization. Atmos. Res. 111, 71–78 (2012)CrossRefGoogle Scholar
  49. Zhang, D.D., Jim, C.Y., Peart, M.R., Jim, C.Y., Shi, C.X.: Rapid changes of precipitation pH in Qinghai province, the northeastern Tibetan Plateau. Sci. Total Environ. 305, 241–248 (2003a)CrossRefGoogle Scholar
  50. Zhang, D.D., Peart, M.R., Jim, C.Y., He, Y.Q., Li, B.S., Chen, J.A.: Precipitation chemistry of Lhasa and other remote towns, Tibet. Atmos. Environ. 37, 231–240 (2003b)CrossRefGoogle Scholar
  51. Zhang, M.Y., Wang, S.J., Wu, F.C., Yuan, X.H., Zhang, Y.: Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos. Res. 84, 311–322 (2007)CrossRefGoogle Scholar
  52. Zhang, N.N., He, Y.Q., Wang, C.F., He, X.Z., Xin, H.J.: The chemical characteristic of soluble ions in total suspended particles (TSP) at Lijiang winter time. Environ. Sci. 32(2), 26–33 (2011)Google Scholar
  53. Zhang, N.N., Cao, J.J., Ho, K.F., He, Y.Q.: Chemical characterization of aerosol collected at Mt. Yulong in wintertime on the southeastern Tibetan Plateau. Atmos. Res. 107, 76–85 (2012a)CrossRefGoogle Scholar
  54. Zhang, N.N., He, Y.Q., Cao, J.J., Ho, K.F., Shen, Z.X.: Long-term trends in chemical composition of precipitation at Lijiang, southeast Tibetan Plateau, southwestern China. Atmos. Res. 106, 50–60 (2012b)CrossRefGoogle Scholar
  55. Zhao, Z.P., Tian, L.D., Li, M., Fischer, Z.Q., Jiao, K.Q.: Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley, Eastern Tien Shan, China. Atmos. Environ. 42, 8934–8942 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ningning Zhang
    • 1
    • 2
    Email author
  • Junji Cao
    • 1
    • 3
  • Yuanqing He
    • 2
  • Shun Xiao
    • 1
    • 4
    • 5
  1. 1.Key Laboratory of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.State key Laboratory of Cryspheric science, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  3. 3.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina
  4. 4.Climate Center of Shaanxi Meteorological BureauXi’anChina
  5. 5.Meteorological Bureau of Baoji MunicipalityBaojiChina

Personalised recommendations