Skip to main content
Log in

Optical growth of highly viscous organic/sulfate particles

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Light extinction by atmospheric particles is strongly dependent on their chemical composition and water content. Since light extinction directly impacts climate, optical measurements of atmospherically relevant aerosols at varying relative humidities (RH) are needed. Recent studies have highlighted the possibility that some atmospheric aerosols are glassy under ambient conditions. Here, the particle optical growth factor, fRHext, was measured for liquid and glassy particles using cavity ring-down aerosol extinction spectroscopy. The particles were composed of ammonium sulfate (AS), 1,2,6-hexanetriol, sucrose, raffinose, and mixed particles containing AS and either sucrose or raffinose. Both sucrose and raffinose can be glassy at room temperature. For the pure organics, the highly viscous sucrose and raffinose particles have similar optical growth curves to the liquid 1,2,6 hexanetriol particles. However, for particles composed of sucrose or raffinose mixed with AS, optical growth depends on the AS weight-percent, which in turn controls the phase state of the AS and ultimately the water uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267(5206), 1924–1935 (1995). doi:10.1126/science.267.5206.1924

    Article  Google Scholar 

  • Baustian, K.J., Wise, M.E., Tolbert, M.A.: Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles. Atmos. Chem. Phys. 10(5), 2307–2317 (2010)

    Article  Google Scholar 

  • Baustian, K.J., Wise, M.E., Jensen, E.J., Schill, G.P., Freedman, M.A., Tolbert, M.A.: State transformations and ice nucleation in amorphous (semi-)solid organic aerosol. Atmos. Chem. Phys. 13(11), 5615–5628 (2013). doi:10.5194/acp-13-5615-2013

    Article  Google Scholar 

  • Baynard, T., Garland, R.M., Ravishankara, A.R., Tolbert, M.A., Lovejoy, E.R.: Key factors influencing the relative humidity dependence of aerosol light scattering. Geophys. Res. Lett. 33(6) (2006). doi:10.1029/2005gl024898

  • Baynard, T., Lovejoy, E.R., Pettersson, A., Brown, S.S., Lack, D., Osthoff, H., Massoli, P., Ciciora, S., Dube, W.P., Ravishankara, A.R.: Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements. Aerosol Sci. Technol. 41(4), 447–462 (2007). doi:10.1080/02786820701222801

    Article  Google Scholar 

  • Beaver, M.R., Garland, R.M., Hasenkopf, C.A., Baynard, T., Ravishankara, A.R., Tolbert, M.A.: A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion. Environ. Res. Lett. 3(4) (2008). doi:10.1088/1748-9326/3/4/045003

  • Beaver, M.R., Freedman, M.A., Hasenkopf, C.A., Tolbert, M.A.: Cooling enhancement of aerosol particles due to surfactant precipitation. J. Phys. Chem. A 114(26), 7070–7076 (2010). doi:10.1021/jp102437q

    Article  Google Scholar 

  • Bodsworth, A., Zobrist, B., Bertram, A.K.: Inhibition of efflorescence in mixed organic-inorganic particles at temperatures less than 250 K. Phys. Chem. Chem. Phys. 12(38), 12259–12266 (2010). doi:10.1039/c0cp00572j

  • Bones, D.L., Reid, J.P., Lienhard, D.M., Krieger, U.K.: Comparing the mechanism of water condensation and evaporation in glassy aerosol. PNAS 109(29), 11613–11618 (2012). doi:10.1073/pnas.1200691109

    Article  Google Scholar 

  • Brooks, S.D., Garland, R.M., Wise, M.E., Prenni, A.J., Cushing, M., Hewitt, E., Tolbert, M.A.: Phase changes in internally mixed maleic acid/ammonium sulfate aerosols. J. Geophys. Res. Atmos. 108(D15) (2003). doi:10.1029/2002jd003204

  • Burnett, D.J., Thielmann, F., Booth, J.: Determining the critical relative humidity for moisture-induced phase transitions. Int. J. Pharm. 287(1–2), 123–133 (2004). doi:10.1016/j.ijpharm.2004.09.009

    Article  Google Scholar 

  • Cappa, C.D., Wilson, K.R.: Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmos. Chem. Phys. 11(5), 1895–1911 (2011). doi:10.5194/acp-11-1895-2011

    Article  Google Scholar 

  • Cziczo, D.J., Nowak, J.B., Hu, J.H., Abbatt, J.P.D.: Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliquescence and crystallization. J. Geophys. Res. Atmos. 102(D15), 18843–18850 (1997). doi:10.1029/97jd01361

    Article  Google Scholar 

  • Dai, Q., Hu, J., Salmeron, M.: Adsorption of water on NaCl (100) surfaces: role of atomic steps. J. Phys. Chem. B 101(11), 1994–1998 (1997). doi:10.1021/jp9625772

    Article  Google Scholar 

  • Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410(6825), 259–267 (2001). doi:10.1038/35065704

    Article  Google Scholar 

  • Hasenkopf, C.A., Freedman, M.A., Beaver, M.R., Toon, O.B., Tolbert, M.A.: Potential climatic impact of organic haze on early earth. Astrobiology 11(2), 135–149 (2011). doi:10.1089/ast.2010.0541

    Article  Google Scholar 

  • Jimenez, J.L., Canagaratna, M.R., Donahue, N.M., Prevot, A.S.H., Zhang, Q., Kroll, J.H., DeCarlo, P.F., Allan, J.D., Coe, H., Ng, N.L., Aiken, A.C., Docherty, K.S., Ulbrich, I.M., Grieshop, A.P., Robinson, A.L., Duplissy, J., Smith, J.D., Wilson, K.R., Lanz, V.A., Hueglin, C., Sun, Y.L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J.M., Collins, D.R., Cubison, M.J., Dunlea, E.J., Huffman, J.A., Onasch, T.B., Alfarra, M.R., Williams, P.I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J.Y., Zhang, Y.M., Dzepina, K., Kimmel, J.R., Sueper, D., Jayne, J.T., Herndon, S.C., Trimborn, A.M., Williams, L.R., Wood, E.C., Middlebrook, A.M., Kolb, C.E., Baltensperger, U., Worsnop, D.R.: Evolution of organic aerosols in the atmosphere. Science 326(5959), 1525–1529 (2009). doi:10.1126/science.1180353

    Article  Google Scholar 

  • Koop, T., Bookhold, J., Shiraiwa, M., Poschl, U.: Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13(43), 19238–19255 (2011). doi:10.1039/c1cp22617g

    Article  Google Scholar 

  • Marcolli, C., Luo, B., Peter, T.: Mixing of the organic aerosol fractions: liquids as the thermodynamically stable phases. J. Phys. Chem. A 108(12), 2216–2224 (2004). doi:10.1021/jp036080l

    Article  Google Scholar 

  • Martin, S.T.: Phase transitions of aqueous atmospheric particles. Chem. Rev. 100(9), 3403–3453 (2000). doi:10.1021/cr990034t

    Article  Google Scholar 

  • Mikhailov, E., Vlasenko, S., Martin, S.T., Koop, T., Poschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9(24), 9491–9522 (2009)

    Article  Google Scholar 

  • Murphy, D.M., Cziczo, D.J., Froyd, K.D., Hudson, P.K., Matthew, B.M., Middlebrook, A.M., Peltier, R.E., Sullivan, A., Thomson, D.S., Weber, R.J.: Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. Atmos. 111(D23) (2006). doi:10.1029/2006jd007340

  • Parsons, M.T., Mak, J., Lipetz, S.R., Bertram, A.K.: Deliquescence of malonic, succinic, glutaric, and adipic acid particles. J. Geophys. Res. Atmos. 109(D6), D06212 (2004). doi:10.1029/2003jd004075

    Article  Google Scholar 

  • Perraud, V., Bruns, E.A., Ezell, M.J., Johnson, S.N., Yu, Y., Alexander, M.L., Zelenyuk, A., Imre, D., Chang, W.L., Dabdub, D., Pankow, J.F., Finlayson-Pitts, B.J.: Nonequilibrium atmospheric secondary organic aerosol formation and growth. PNAS 109(8), 2836–2841 (2012). doi:10.1073/pnas.1119909109

    Article  Google Scholar 

  • Pettersson, A., Lovejoy, E.R., Brock, C.A., Brown, S.S., Ravishankara, A.R.: Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy. J. Aerosol Sci. 35(8), 995–1011 (2004). doi:10.1016/j.jaerosci.2004.02.008

    Article  Google Scholar 

  • Pratt, K.A., Prather, K.A.: Aircraft measurements of vertical profiles of aerosol mixing states. J. Geophys. Res. Atmos. 115 (2010). doi:10.1029/2009jd013150

  • Renbaum-Wolff, L., Grayson, J.W., Bateman, A.P., Kuwata, M., Sellier, M., Murray, B.J., Shilling, J.E., Martin, S.T., Bertram, A.K.: Viscosity of alpha-pinene secondary organic material and implications for particle growth and reactivity. PNAS 110(20), 8014–8019 (2013). doi:10.1073/pnas.1219548110

    Article  Google Scholar 

  • Saukko, E., Lambe, A.T., Massoli, P., Koop, T., Wright, J.P., Croasdale, D.R., Pedernera, D.A., Onasch, T.B., Laaksonen, A., Davidovits, P., Worsnop, D.R., Virtanen, A.: Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmos. Chem. Phys. 12(16), 7517–7529 (2012). doi:10.5194/acp-12-7517-2012

    Article  Google Scholar 

  • Schill, G.P., Tolbert, M.A.: Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings. Atmos. Chem. Phys. 13(9), 4681–4695 (2013). doi:10.5194/acp-13-4681-2013

    Article  Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley Interscience, Hoboken (2006)

    Google Scholar 

  • Shindo, H., Ohashi, M., Tateishi, O., Seo, A.: Atomic force microscopic observation of step movements on NaCl(001) and NaF(001) with the help of adsorbed water. J. Chem. Soc. Faraday Trans. 93(6), 1169–1174 (1997). doi:10.1039/a606256c

    Article  Google Scholar 

  • Shiraiwa, M., Ammann, M., Koop, T., Poschl, U.: Gas uptake and chemical aging of semisolid organic aerosol particles. PNAS 108(27), 11003–11008 (2011). doi:10.1073/pnas.1103045108

    Article  Google Scholar 

  • Shiraiwa, M., Poschl, U., Knopf, D.A.: Multiphase chemical kinetics of NO3 radicals reacting with organic aerosol components from biomass burning. Environ. Sci. Technol. 46(12), 6630–6636 (2012). doi:10.1021/es300677a

    Article  Google Scholar 

  • Sigma-Aldrich: 1,2,6-Hexanetriol product specification. http://www.sigmaaldrich.com/catalog/product/aldrich/t66206?lang=en&region=US (2011). 2014

  • Tang, I.N., Munkelwitz, H.R.: Composition and temperature-dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ A Gen. Top. 27(4), 467–473 (1993). doi:10.1016/0960-1686(93)90204-c

    Article  Google Scholar 

  • Tong, H.J., Reid, J.P., Bones, D.L., Luo, B.P., Krieger, U.K.: Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature. Atmos. Chem. Phys. 11(10), 4739–4754 (2011). doi:10.5194/acp-11-4739-2011

    Article  Google Scholar 

  • Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J.M., Holopainen, J.K., Poschl, U., Kulmala, M., Worsnop, D.R., Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467(7317), 824–827 (2010). doi:10.1038/nature09455

    Article  Google Scholar 

  • Wang, B.B., Laskin, A., Roedel, T., Gilles, M.K., Moffet, R.C., Tivanski, A.V., Knopf, D.A.: Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K. J. Geophys. Res. Atmos. 117 (2012). doi:10.1029/2012jd017446

  • Wise, M.E., Martin, S.T., Russell, L.M., Buseck, P.R.: Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci. Technol. 42(4), 281–294 (2008). doi:10.1080/02786820802047115

    Article  Google Scholar 

  • Zhang, R.Y., Khalizov, A.F., Pagels, J., Zhang, D., Xue, H.X., McMurry, P.H.: Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. PNAS 105(30), 10291–10296 (2008). doi:10.1073/pnas.0804860105

    Article  Google Scholar 

  • Zobrist, B., Marcolli, C., Pedernera, D.A., Koop, T.: Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 8(17), 5221–5244 (2008)

    Article  Google Scholar 

  • Zobrist, B., Soonsin, V., Luo, B.P., Krieger, U.K., Marcolli, C., Peter, T., Koop, T.: Ultra-slow water diffusion in aqueous sucrose glasses. Phys. Chem. Chem. Phys. 13(8), 3514–3526 (2011). doi:10.1039/c0cp01273d

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from NASA Grant NNX09AE126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Robinson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 45 kb)

Table S2

(DOCX 64 kb)

Figure S1

(DOCX 1503 kb)

Figure S2

(DOCX 1727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, C.B., Schill, G.P. & Tolbert, M.A. Optical growth of highly viscous organic/sulfate particles. J Atmos Chem 71, 145–156 (2014). https://doi.org/10.1007/s10874-014-9287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-014-9287-8

Keywords

Navigation