Journal of Atmospheric Chemistry

, Volume 71, Issue 2, pp 95–112 | Cite as

Study of Ozone and NO2 over Gadanki – a rural site in South India

  • K. RenukaEmail author
  • Harish Gadhavi
  • A. Jayaraman
  • Shyam Lal
  • M. Naja
  • S. V. Bhaskara Rao


We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34 ± 13 ppbv during 1993–96 to 30 ± 15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.


Ozone Trace-gases NOX Atmospheric chemistry Rural India Oxides of nitrogen 



Authors gratefully acknowledges the financial support provided by Indian Space Research Organization’s Geosphere-Biosphere Program through its sub-program Atmospheric Chemistry and Transport (ISRO-GBP – ATCTM). Authors acknowledge the free use of tropospheric NO2 column data from the GOME and OMI sensors from Authors acknowledge T. N. Rao and his team members for maintaining weather station and providing meteorological data used in this study. Authors acknowledge help of V. Ravi Kiran for maintaining gas-analysers. Authors are grateful to Atmospheric Chemistry Research Division at NCAR for providing NCAR Master Mechanism model used in this study through NCAR Community Data Portal. Authors thank Amit Kumar Patra for his help in grammatical and linguistic editing of the manuscript.


  1. Akimoto, H.: Global Air Quality and Pollution. Science 302, 1716–1719 (2003). doi: 10.1126/science.1092666 CrossRefGoogle Scholar
  2. Ali, K., Inamdar, S.R., Beig, G., Ghude, S., Sunil, P.: Surface ozone scenario at Pune and Delhi during the decade of 1990s. J. Earth Syst. Sci. 121, 373–383 (2012)CrossRefGoogle Scholar
  3. Aumont, B.: Madronich, S.: Bey, I.: and Tyndall, G.: Contribution of secondary VOC to the composition of aqueous atmospheric particles: A modeling approach. J. Atmos. Chem., 59–75 (2000)Google Scholar
  4. Basha, G. and Ratnam, M.V.: Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. J. Geophys. Res. 114, D16101+ (2009). doi: 10.1029/2008jd011692
  5. Beig, G., Gunthe, S., Jadhav, D.B.: Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in India. J. Atmos. Chem. 57, 239–253 (2007). doi: 10.1007/s10874-007-9068-8 CrossRefGoogle Scholar
  6. Berman, J.D., Fann, N., Hollingsworth, J.W., Pinkerton, K.E., Rom, W.N., Szema, A.M., Breysse, P.N., White, R.H. and Curriero, F.C.: Health Benefits from Large Scale Ozone Reduction in the United States. Environ. Health Perspect., 1404–1410 doi:10.1289/ehp.1104851. (2012)Google Scholar
  7. Boersma, K., Eskes, H. and Brinksma, E.: Error analysis for tropospheric NO2 retrieval from space. J. Geophys. Res. 109, D04311+. doi:10.1029/2003JD003962 (2004)Google Scholar
  8. Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksma, E.J.: van Der, Sneep, M., van den Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason, J.F. and Bucsela, E.J.: Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 7, 2103–2118 (2007). doi: 10.5194/acp-7-2103-2007 CrossRefGoogle Scholar
  9. CAAC: Twelfth five-year plan on air pollution prevention and control in key regions (China clean air policy briefing no. 1) (English Translation), Clean Air Alliance of China, Secretariat for Clean Air Alliance of China, suit 1705, Building 1, Park Avenue, 16 Jianguomenwai Street, Beijing 100022 (2013)Google Scholar
  10. Camalier, L., Cox, W., Dolwick, P.: The effects of meteorology on ozone in urban areas and their use in assessing ozone trends. Atmos. Environ. 41, 7127–7137 (2007). doi: 10.1016/j.atmosenv.2007.04.061 CrossRefGoogle Scholar
  11. Cartalis, C., Varotsos, C.: Surface ozone in Athens, Greece, at the beginning and at the end of the twentieth century. Atmos. Environ. 28, 3–8 (1994). doi: 10.1016/1352-2310(94)90018-3 CrossRefGoogle Scholar
  12. Chou, C.C.K., Liu, S.C., Lin, C.-Y., Shiu, C.-J., Chang, K.-H.: The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmos. Environ. 40, 3898–3908 (2006). doi: 10.1016/j.atmosenv.2006.02.018 CrossRefGoogle Scholar
  13. David, L.M. and Nair, P.R.: Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions. J. Geophys. Res. 116, D10303+. doi:10.1029/2010jd015076 (2011)Google Scholar
  14. Engardt, M.: Modelling of near-surface ozone over South Asia. J. Atmos. Chem. 59, 61–80 (2008). doi: 10.1007/s10874-008-9096-z CrossRefGoogle Scholar
  15. Fiore, A.M., Jacob, D.J., Logan, J.A. and Yin, J.H.: Long-term trends in ground level ozone over the contiguous United States, 1980–1995. J. Geophys. Res. 103, 1471+. doi:10.1029/97jd03036 (1998)Google Scholar
  16. Fishman, J., Ramanathan, V., Crutzen, P.J., Liu, S.C.: Troposheric Ozone and Climate. Nature 282, 818–820 (1979)CrossRefGoogle Scholar
  17. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Dorland, R.: Chapter 2, In : Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M., Henry LeRoy Miller, J., Chen, Z. (eds.) In Climate Change 2007: The Physical Science Basis (4th Assessment report of the Intergovernmental Panel on Climate Change), pp. 129–235. Cambridge University Press, Cambridge (2007)Google Scholar
  18. Foster, A., Kumar, N.: Health effects of air quality regulations in Delhi. India. Atmos. Environ. 45, 1675–1683 (2011). doi: 10.1016/j.atmosenv.2011.01.005 CrossRefGoogle Scholar
  19. Ganguly, N.D., Tzanis, C.: Study of Stratosphere-troposphere exchange events of ozone in India and Greece using ozonesonde ascents. Met. Apps 18, 467–474 (2011). doi: 10.1002/met.241 CrossRefGoogle Scholar
  20. Ganguly, N.: Influence of Stratospheric Intrusion on the Surface Ozone Levels in India. ISRN Meteorology, 1–7 . doi:10.5402/2012/625318 (2012)Google Scholar
  21. Ganguly, N. and Tzanis, C.: High Surface Ozone Episodes at New Delhi, India, In on a sustainable future of the earth’s natural resources., Springer Berlin Heidelberg (2013)Google Scholar
  22. Ganzeveld, L.N.: Global soil-biogenic NO x emissions and the role of canopy processes. J. Geophys. Res. 107. doi:10.1029/2001jd001289 (2002)Google Scholar
  23. Ghude, S.D., Fadnavis, S., Beig, G., Polade, S.D. and van Der: Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J. Geophys. Res. 113, D20305+ (2008) doi: 10.1029/2007jd009615
  24. Hilboll, A., Richter, A., Burrows, J.P.: Long-term changes of tropospheric NO2 over mega cities derived from multiple satellite instruments. Atmos. Chem. Phys. 13, 4145–4169 (2013). doi: 10.5194/acp-13-4145-2013 CrossRefGoogle Scholar
  25. Holland, M., Watkiss, P. and Pye, S.: Cost-benefit analysis of the Thematic strategy on air pollution for service contract for carrying out cost-benefit analysis of air quality related issues, in particular in the Clean Air for Europe (CAFE) programme, European Commission DG Environment (2005)Google Scholar
  26. Jaffe, D., Ray, J.: Increase in surface ozone at rural sites in the western US. Atmos. Environ. 41, 5452–5463 (2007). doi: 10.1016/j.atmosenv.2007.02.034 CrossRefGoogle Scholar
  27. Jonson, J., Simpson, D., Fagerli, H., Solberg, S.: Can we explain the trends in European ozone levels? Atmos. Chem. Phys. 6, 51–66 (2006)CrossRefGoogle Scholar
  28. Karl, T., Guenther, A., Yokelson, R.J., Greenberg, J., Potosnak, M., Blake, D.R. and Artaxo, P.: The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J. Geophys. Res. 112, D18302+. doi:10.1029/2007jd008539 (2007)Google Scholar
  29. Kumar, R., Naja, M., Venkataramani, S. and Wild, O.: Variations in surface ozone at Nainital: A high-altitude site in the central Himalayas. J. Geophys. Res. 115, D16302+. doi:10.1029/2009jd013715 (2010)Google Scholar
  30. Lal, S.: Trace gases over the Indian region. Indian. J. Radio. Space. 36, 556–570 (2007)Google Scholar
  31. van der Leun, J., Tang, H.H., Tevinil, M.: Environmental effects of ozone depletion: 1998 Assessment. United Nations Environment Programme (UNEP), Nairobi (1998)Google Scholar
  32. Londhe, A., Jadhav, D., Buchunde, P., Kartha, M.: Surface ozone variability in the urban and nearby rural locations of tropical India. Curr. Sci. 95(12), 1724–1729 (2008)Google Scholar
  33. Madronich, S.: Chemical evolution of gaseous air pollutants down-wind of tropical mega cities: Mexico City case study. Atmos. Environ. 40, 6012–6018 (2006). doi: 10.1016/j.atmosenv.2005.08.047 CrossRefGoogle Scholar
  34. Madronich, S., Calvert, J.: Permutation reactions of organic peroxy radicals in the troposphere. J. Geophys. Res. 95, 5697–5715 (1990)CrossRefGoogle Scholar
  35. Mieruch, S., Noel, S., Bovensmann, H., Burrows, J.P.: Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmos. Chem. Phys. 8, 491–504 (2008)CrossRefGoogle Scholar
  36. Mohammed, N., Ramli, N., Yahya, A.: Paddy Response to Ozone: A Comparison between an Industrial and Residential Area in Malaysia. Environ. and Poll. 1, 169–175 (2012). doi: 10.5539/ep.v1n2p169 Google Scholar
  37. Mohammed, N., Ramli, N., Yahya, A.: Ozone phytotoxicity evaluation and prediction of crops production in tropical regions. Atmos. Environ. 68, 343–349 (2013). doi: 10.1016/j.atmosenv.2012.09.010 CrossRefGoogle Scholar
  38. Naja, M., Lal, S.: Changes in surface ozone amount and its diurnal and seasonal patterns, from 1954–55 to 1991–93, measured at Ahmedabad (23 N). India. Geophys. Res. Lett. 23(1), 81–84 (1996)CrossRefGoogle Scholar
  39. Naja, M. and Lal, S.: Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E), a tropical rural site in India. J. Geophys. Res. 107, 4197+. doi:10.1029/2001jd000357 (2002)Google Scholar
  40. Naja, M., Lal, S., Chand, D.: Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1680m asl) in India. Atmos. Environ. 37, 4205–4215 (2003). doi: 10.1016/s1352-2310(03)00565-x CrossRefGoogle Scholar
  41. National Research Council, U., Rethinking the ozone problem in urban and regional air pollution, (1991)Google Scholar
  42. Price, C., Penner, J. and Prather, M.: NO x from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res. 102, 5929+. doi:10.1029/96jd03504 (1997)Google Scholar
  43. Purkait, N., De, S., Sen, S., Chakrabarty, D.: Surface ozone and its precursors at two sites in the northeast coast of India. Indian. J. Radio. Space. 38, 86–97 (2009)Google Scholar
  44. Sanderson, M.G., Jones, C.D., Collins, W.J., Johnson, C.E., Derwent, R.G.: Effect of Climate Change on Isoprene Emissions and Surface Ozone Levels. Geophys. Res. Lett. 30, 1–4 (2003). doi: 10.1029/2003gl017642 Google Scholar
  45. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York (1998)Google Scholar
  46. Sheel, V., Lal, S., Richter, A., Burrows, J.P.: Comparison of satellite observed tropospheric NO2 over India with model simulations. Atmos. Environ. 44, 3314–3321 (2010). doi: 10.1016/j.atmosenv.2010.05.043 CrossRefGoogle Scholar
  47. Stroud, C., Madronich, S., Atlas, E.R.B., Flocke, F., Weinheimer, A., Talbot, R., Fried, A., Wert, B., Shetter, R., Lefer, B., Coffey, M., Heickes, B., Blake, D.: Photochemistry in the Arctic free troposphere: NOX budget and the role of odd nitrogen reservoir recycling. Atmos. Environ. 37, 3351–3364 (2003). doi: 10.1016/S1352-2310(03)00353-4 CrossRefGoogle Scholar
  48. Swamy, Y.V., Venkanna, R., Nikhil, G.N., Chitanya, D.N.S.K., Sinha, P.R., Ramakrishna, M., Rao, A.G.: Impact of Nitrogen Oxides, Volatile Organic Compounds and Black Carbon on Atmospheric Ozone Levels at a Semi Arid Urban Site in Hyderabad. Aerosol. Air. Qual. Res. 12, 662–671 (2012). doi: 10.4209/aaqr.2012.01.0019 Google Scholar
  49. Tanimoto, H.: Increase in springtime tropospheric ozone at a mountainous site in Japan for the period 1998–2006. Atmos. Environ. 43, 1358–1363 (2009). doi: 10.1016/j.atmosenv.2008.12.006 CrossRefGoogle Scholar
  50. Tanimoto, H., Ohara, T. and Uno, I.: Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998–2007. Geophys. Res. Lett. 36, L23802+. doi:10.1029/2009gl041382 (2009)Google Scholar
  51. Tripathi, O.P., Stephen, G.J., O’Dowd, C., O’Leary, B., Lambkin, K., Moran, E., O’Doherty, S.J., Spain, T.G.: An assessment of the surface ozone trend in Ireland relevant to air pollution and environmental protection. Atmos. Poll. Res. 3, 341–351 (2012)Google Scholar
  52. Tzanis, C., Varotsos, C., Ferm, M., Christodoulakis, J., Assimakopoulos, M.N., Efthymiou, C.: Nitric acid and particulate matter measurements at Athens, Greece, in connection with corrosion studies. Atmos. Chem. Phys. 9, 8309–8316 (2009). doi: 10.5194/acp-9-8309-2009 CrossRefGoogle Scholar
  53. Tzanis, C., Varotsos, C., Christodoulakis, J., Tidblad, J., Ferm, M., Ionescu, A., Lefevre, R.A., Theodorakopoulou, K., Kreislova, K.: On the corrosion and soiling effects on materials by air pollution in Athens, Greece. Atmos. Chem. Phys. 11, 12039–12048 (2011). doi: 10.5194/acp-11-12039-2011 CrossRefGoogle Scholar
  54. Varotsos, C., Ondov, J., Tzanis, C., Öztürk, F., Nelson, M., Ke, H., Christodoulakis, J.: An observational study of the atmospheric ultra-fine particle dynamics. Atmos. Environ. 59, 312–319 (2012). doi: 10.1016/j.atmosenv.2012.05.015 CrossRefGoogle Scholar
  55. Walter, B.P., Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem. Cy. 14, 745–765 (2000). doi: 10.1029/1999gb001204 CrossRefGoogle Scholar
  56. Wang, X., Mauzerall, D.L.: Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 38, 4383–4402 (2004). doi: 10.1016/j.atmosenv.2004.03.067 CrossRefGoogle Scholar
  57. WHO. Health aspects of air pollution with particulate matter ozone and nitrogen dioxide, WHO, (2003)Google Scholar
  58. Wiedingmyer, C., Tie, X., Guenther, A.: Future changes in biogenic isoprene emissions: How might they affect regional and global chemistry. Earth. Interact. 10, 1–19 (2006). doi: 10.1175/EI174.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • K. Renuka
    • 1
    Email author
  • Harish Gadhavi
    • 1
  • A. Jayaraman
    • 1
  • Shyam Lal
    • 2
  • M. Naja
    • 3
  • S. V. Bhaskara Rao
    • 4
  1. 1.National Atmospheric Research LaboratoryChittoor (dt)India
  2. 2.Physical Research LaboratoryAhmedabadIndia
  3. 3.Aryabhatta Research Institute of Observational SciencesNainitalIndia
  4. 4.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations