Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ

Abstract

Real time, atmospheric NO2 column profiles over the Mid-Atlantic states, during the July 2011 National Aeronautics and Space Administration (NASA) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations to Air Quality (DISCOVER AQ) flight campaign, demonstrated that a cavity ring down spectrometer with a light emitting diode light source (LED-CRD) is a suitable technique for detecting NO2 in the boundary layer (BL) and lower free troposphere (LFT). Results from a side-by-side flight between a NASA P3 aircraft and a University of Maryland (UMD) Cessna 402B aircraft show that NO2 concentrations in ambient air from 0.08 nmol /mol (or ppbv) to 1.3 nmol/mol were consistent with NO2 measurements obtained via laser induced fluorescence (LIF) and photolysis followed by NO chemiluminescence (P-CL). The current LED-CRD, commercially available by Los Gatos Research (LGR), includes the modifications added by Castellanos et al. (Rev. Sci. Instrum. 80:113107, 2009) to compensate for baseline drift and humidity through built in zeroing and drying. Because of laser instability in the initial instrument, the laser light source in the Castellanos et al. (Rev. Sci. Instrum. 80:113107, 2009) instrument has been replaced with a light emitting diode. Six independent calibrations demonstrated the instrument’s linearity up through 150 nmol/mol NO2 and excellent stability in calibration coefficient of 1.26 (± 3.7 %). The instrument detection limit is 80 pmol/mol. Aircraft measurements over the Mid-Atlantic are included showing horizontal and vertical distributions of NO2 during air quality episodes. During 23 research flights, NO2 profiles were measured west and generally upwind of the Baltimore/Washington, D.C. area in the morning and east (generally downwind) of the metropolitan region in the afternoon. Column contents (surface to 2,500 m altitude) were remarkably similar (≈3 × 1015 molecules/cm2) indicating that NO2 is widely distributed over the eastern US contributing to the regional (spatial scales of approximately1000 km) nature of smog events.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Annesi-Maesano: Epidemiology of chronic obstructive pulmonary disease. In: Siafakas, N.M. (ed.) Management of chronic obstructive pulmonary disease, vol. 11, pp. 41–70. European Respiratory Society Journals Ltd, Wakefield (2006)

    Google Scholar 

  2. Blonde, N., Boersma, K.F., Eskes, H.J., van der A, R.J., Van Roozendael, M., De Smedt, I., Bergametti, G., Vautard, R.: Intercomparison of SCIAMACHY nitrogen dioxide observations, In Situ measurements and air quality modeling results over Western Europe. J. Geophys. Res. 112, D10311 (2007). doi:10.1029/2006JD007277

    Article  Google Scholar 

  3. Bucsela, E.J., Perring, A.E., Cohen, R.C., Boersma, K.F., Celarier, E.A., Gleason, J.F., Wenig, M.O., Bertram, T.H., Wooldridge, P.J., Dirksen, R., Veefkind, J.P.: Comparison of tropospheric NO2 from In Situ aircraft measurements with near-real-time and standard product data from OMI. J. Geophys. Res. 113, D16S31 (2008). doi:10.1029/2007JD008838

    Google Scholar 

  4. Busch, K.W., Busch, M.A.: Introduction to cavity-ringdown spectroscopy. In: Busch, K.W., Busch, M.A. (eds.) Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, pp. 7–19. American Chemical Society, Washington, D.C (1999)

    Google Scholar 

  5. Castellanos, P., Luke, W.T., Kelley, P., Stehr, J.W., Ehrman, S.H., Dickerson, R.R.: Modification of a commercial cavity ring-down spectroscopy NO2 detector for enhanced sensitivity. Rev. Sci. Instrum. 80, 113107 (2009)

    Article  Google Scholar 

  6. Castellanos, P., Marufu, L., Doddridge, B., Taubman, B., Schwab, J., Hains, J., Ehrman, S., Dickerson, R.: Ozone, oxides of nitrogen, and carbon monoxides during pollution events over the eastern United States: an evaluation of emissions and vertical mixing. J. Geophys. Res. 116, D16307 (2011). doi:10.1029/2010JD014540

    Article  Google Scholar 

  7. Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Middleton, P., Wang, T.: Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 97(D5), 6037–6055 (1992)

    Article  Google Scholar 

  8. Dari-Salisburgo, C., Di Carlo, P., Giammaria, G., Yoshizumi, K., D’Altorio, A.: Laser induced fluorescence instrument for NO2 measurements: observations at a central Italy background site. Atmos. Environ. 43, 970–977 (2009)

    Article  Google Scholar 

  9. Day, D.A., Wooldridge, P.J., Dillon, M.B., Thornton, J.A., Cohen, R.C.: A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. J. Geophys. Res. 207(D6), 4046 (2002). doi:10.1029/2001JD000779

    Article  Google Scholar 

  10. DiCarlo, P., Aruffo, E., Busilacchio, M., Glammaria, F., Dari-Salisburgo, C., Biancofiore, F., Visconti, G., Lee, J., Moller, S., Reeves, C.E., Bauguitte, S., Forster, G., Jones, R.L., Ouyang, B.: Aircraft based four-channel thermal dissociation laser induced fluorescence instrument for simultaneous measurements of NO2, total peroxy nitrate, total alkyl nitrate, and HNO3. Atmos. Meas. Tech. Discuss. 5, 8759–8787 (2012)

    Article  Google Scholar 

  11. Dunlea, E.J., Herndon, S.C., Nelson, D.D., Volkamer, R.M., San Martini, F., Sheehy, P.M., Zahniser, M.S., Shorter, J.H., Wormhoudt, J.C., Lamb, B.K., Allwine, E.J., Gaffney, J.S., Marley, N.A., Grutter, M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas, C.R., Kolb, C.E., Molina, L.T., Molina, M.J.: Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. Discuss. 7, 569–604 (2007)

    Article  Google Scholar 

  12. Emmons, L.K., Carroll, M.A., Hauglustaine, D.A., Brasseur, G.P., Atherton, C., Penner, J., Sillman, S., Levy II, H., Rohrer, F., Wauben, W.M.F., Van Velthoven, P.F.J., Wang, Y., Jacob, D., Bakwin, P., Dickerson, R., Doddridge, B., Gerbig, C., Honrath, R., Hϋbler, G., Jaffe, D., Kondo, Y., Munger, J.W., Torres, A., Volz-Thomas, A.: Climatologies of NOx and NOy: a comparison of data and models. Atmos. Environ. 31(12), 1851–1904 (1997)

    Article  Google Scholar 

  13. EPA: Report No. EPA/600/R-05/0004aA (2006)

  14. Fehsenfeld, F.C., Dickerson, R.R., Hϋbler, G., Luke, W.T., Nunnermacker, L.J., Williams, E.J., Roberts, J.M., Calvert, J.G., Curran, C.M., Delany, A.C., Eubank, C.S., Fahey, D.W., Fried, A., Gandrud, B.W., Langford, A.O., Murphy, P.C., Norton, R.B., Pickering, K.E., Ridley, B.A.: A ground-based intercomparison of NO, NOx, and NOy measurement techniques. J. Geophys. Res. 92(D12), 14710–14722 (1987)

    Article  Google Scholar 

  15. Fehsenfeld, F.C., Williams, E.J., Buhr, M.P., Hubler, G., Langford, A.O., Murphy, P.C., Parish, D.D., Norton, R.B., Fahey, D.W., Drummond, J.W., Mackay, G.I., Roychowdhury, U.K., Hovermale, C., Mohnen, V.A., Demerjian, K.L., Galvin, P.J., Calvert, J.G., Ridley, B.A., Grahek, F., Heikes, B.G., Kok, G.L., Shetter, J.D., Walega, J.G., Elsworth, C.M., Schiff, H.I.: Intercomparison of NO2 measurement techniques. J Geophys. Res. 95(D4), (1990). doi:10.1029/JD095iD04p03579

  16. Finlayson-Pitts, B.J., Pitts Jr., J.N.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic, San Diego (2000). 4–8pp

    Google Scholar 

  17. Fried, A., Sams, R., Dorko, W., Elkins, J., Cai, Z.-T.: Determination of nitrogen dioxide in air compressed gas mixtures by quantitative tunable diode laser absorption spectrometry and chemiluminescence detection. Anal. Chem. 60, 394–403 (1998)

    Article  Google Scholar 

  18. Fuchs, H., Ball, S.M., Bohn, B., Brauers, T., Cohen, R.C., Dorn, H.-P., Dubé, W.P., Fry, J.L., Häseler, R., Heitmann, U., Jones, R.L., Kleffmann, J., Mentel, T.F., Müsgen, P., Rohrer, F., Rollins, A.W., Ruth, A.A., Kiendler-Scharr, A., Schlosser, E., Shillings, A.J.L., Tillmann, R., Varma, R.M., Venables, D.S., Villena Tapia, G., Wahner, A., Wegener, R., Wooldridge, P.J., Brown, S.S.: Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmos. Meas. Tech. 3, 21–37 (2010)

    Article  Google Scholar 

  19. Halla, J.D., Wagner, T., Beirle, S., Brook, J.R., Hayden, K.L., O’Brien, J.M., Ng, A., Majonis, D., Wenig, M.O., McLaren, R.: Determination of tropospheric vertical columns of NO2 and aerosol optical properties in a rural setting using MAX-DOAS. Atmos. Chem. Phys. 11, 12475–12498 (2011)

    Article  Google Scholar 

  20. Hargrove, J., Wang, L., Muyskens, K., Muyskens, M., Medina, D., Zaide, S., Zhang, J.: Cavity ring-down spectroscopy of ambient NO2 with quantification and elimination of inteferences. Environ. Sci. Technol. 40, 7868–7873 (2006)

    Article  Google Scholar 

  21. He, H., Loughner, C., Stehr, J., Arkinson, H., Brent, L., Follette-Cook, M., Thompson, A., Diskin, G., Anderson, B., Crawford, J., Weinheimer, A., Cohen, R.C., Lee, P., Hains, J., Dickerson, R.: An elevated reservoir in a six-day pollution event over the Mid-Atlantic states: a case study from airborne measurements and numerical simulations. Atmos. Environ. (2013a)

  22. He, H., Stehr, J., Hains, J., Krask, D., Doddridge, B., Vinnikov, K., Canty, T., Hosley, K., Salawitch, R., Worden, H., Dickerson, R.: Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011. Atmos. Chem. Phys. Discuss. 13, 3135–3178 (2013b). doi:10.5194/acpd-13-3135-2013

    Article  Google Scholar 

  23. Heland, J., Schlager, H.: First comparison of tropospheric NO2 column densities retrieved from GOME measurements and In Situ aircraft profile measurments. Geophys. Res. Lett. 29(20), (2002). doi:10.1029/2002GL015528

  24. Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., Abuhassan, N.: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: intercomparisons and application to OMI validation. J. Geophys. Res. 14, D13307 (2009)

    Article  Google Scholar 

  25. Jacob, D.J., Heikes, B.G., Fan, S.-M., Logan, J.A., Mauzerall, D.L., Bradshaw, J.D., Singh, H.B., Gregory, G.L., Talbot, R.W., Blake, D.R., Sachse, G.W.: Origin of ozone and NOx in the tropical troposphere: a photochemical analysis of aircraft observations over the South Atlantic basin. JGR 10(D19), 24235–24250 (1996)

    Article  Google Scholar 

  26. Jaeglé, L., Jacob, D.L., Wang, Y., Weinheimer, A.J., Ridley, B.A., Campos, T.L., Sachse, G.W., Hagen, D.E.: Sources and chemistry of NOx in the upper troposphere over the United States. Geophys. Res. Lett. 25(10), 1705–1708 (1998)

    Article  Google Scholar 

  27. Kim, S.-W., Heckel, A., Frost, G.J., Richter, A., Gleason, J., Burrows, J.P., McKeen, S., Hsie, E.-Y., Cranier, C., Trainer, M.: NO2 columns in the western United States observed from space and simulated by a regional chemistry model and their implications for NOx emissions. J. Geophys. Res. 114, D11301 (2009). doi:10.1029/2008JD011343

    Article  Google Scholar 

  28. Kleinman, L.I., Lee, Y.-N., Springston, S.R., Nunnermacker, L., Zhou, X., Brown, R., Hallock, K., Klotz, P., Leahy, D., Lee, J.H., Newman, L.: Ozone formation at a rural site in the southeastern United States. J. Geophys. Res. 99(D2), 3469–6482 (1994)

    Article  Google Scholar 

  29. Lehmann, K., Berden, G., Engeln, R.: An introduction to cavity ring-down spectroscopy. In: Berden, G., Engeln, R. (eds.) Cavity Ring-Down Spectroscopy, pp. 6–10. Wiley, Chichester (2009)

    Google Scholar 

  30. Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., Jähne, B.: Quantitative analysis of NOx emissions from Global Ozone Monitoring experiment satellite image sequences. J. Geophys. Res. 106(D6), 5493–5505 (2001)

    Article  Google Scholar 

  31. Logan, J.A.: Ozone in rural areas of the United States. J. Geophys. Res. 94(D6), 8511–8532 (1989)

    Article  Google Scholar 

  32. Luke, W.T., Dickerson, R.R., Ryan, W.F., Pickering, K.E., Nunnermacker, L.J.: Tropospheric chemistry over the lower great plains of the United States. 2. Trace gas profiles and distributions. J. Geophys. Res. 97(D18), 20647–20670 (1992)

    Article  Google Scholar 

  33. Luke, W.T., Arnold, J.R., Gunter, R.L., Watson, T.B., Wellman, D.L., Dasgupta, P.K., Li, J., Riemer, D., Tate, P.: The NOAA Twin Otter and its role in BRACE: platform description. Atmos. Environ. 41, 4177–4189 (2007)

    Article  Google Scholar 

  34. Napelenok, S.L., Pinder, R.W., Gilliland, A.B.., Martin, R.V.: A method for evaluating spatially-resolved NOx emissions using Kalman filter inversion, direct sensitivities, and space-based NO2 observations. Atmos. Chem. Phys. 8, 5603–5614 (2008)

    Article  Google Scholar 

  35. Neuman, J.A., Gao, R.S., Fahey, D.W., Holecek, J.S., Ridley, B.A., Walega, J.G., Grahek, F.E., Richard, E.C., McElroy, C.T., Thompson, T.L., Elkins, J.W., Moore, F.L., Ray, E.A.: In Situ measurements of HNO3, NOy, NO and O3 in the lower stratosphere and upper troposphere. Atmos. Environ. 35(33), 5789–5797 (2001)

    Article  Google Scholar 

  36. Ordóῆez, C., Tichter, A., Steinbacher, M., Zellweger, C., Nüss, H., Burrows, J.P., Pérvôt, A.S.H.: Comparison of 7 years of satellite-borne and ground-based tropospheric NO2 measurements around Milan, Italy. J. Geophys. Res. 111(D5), D05310 (2006). doi:10.1029/2005JD006305

    Google Scholar 

  37. Pollack, I.B., Lerner, B.M., Ryerson, T.B.: Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis-chemiluminescence. J. Atmos. Chem. 65(2), 111–125 (2011)

    Google Scholar 

  38. Ryerson, T.B., Williams, E.J., Fehsenfeld, F.C.: An efficient photolysis system for fast-response NO2 measurements. JGR 105(D21), 26,447–26,461 (2000)

    Article  Google Scholar 

  39. Schaub, D., Boersma, K.F., Kaiser, J.W., Weiss, A.K., Folini, D., Eskes, H.J., Buchmann, B.: Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based In Situ measurements. J. Atmos. Chem. Phys. 6, 3211–3229 (2006)

    Article  Google Scholar 

  40. Schwartz, J., Zeger, S.: Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses. Am. J. Respir. Crit. Care Med. 1(141), 62–67 (1990)

    Google Scholar 

  41. Skoog, D.A., Holer, F.J., Nieman, T.A.: Principles of Instrumental Analysis. Thomas Learning, Inc, Toronto (1998)

    Google Scholar 

  42. Suzuki, H., Miyao, Y., Nakayama, T., Pearce, J.K., Matsumi, Y., Takahashi, K., Kita, K., Tonokura, K.: Comparison of laser-induced fluorescence and chemiluminescence measurements of NO2 at an urban site. Atmos. Environ. 45, 6233–6240 (2011)

    Article  Google Scholar 

  43. Thorn, W. J.: Preparation and Analysis of NO and NO2 Gas Standard Reference Materials In Aluminum Cylinders, hh; Poster with Extended Abstract #2010-A-900-AWMA; presented at A&WMA’s 103rd Annual Conference & Exhibition June 23, Calgary, Alberta, Canada (2010)

  44. Thornton, J.A., Wooldridge, P.J., Cohen, R.C.: Atmospheric NO2: In Situ laser- induced fluorescence detection at parts per trillion mixing ratios. Anal. Chem. 72, 528 (2000)

    Article  Google Scholar 

  45. Trainer, M., Parish, D.D., Buhr, M.P., Norton, R.B., Fehsenfeld, R.C., Anlauf, K.G., Bottenheim, J.W., Tang, Y.Z., Wiebe, H.A., Roberts, J.M., Tanner, R.L., Newman, L., Bowersox, V.C., Meagher, J.F., Olszyna, K.J., Rodgers, M.O., Wang, T., Berresheim, H., Demerjian, K.L., Roychowdhury, U.K.: Correlation of ozone with NOy in photochemically aged air. J. Geophys. Res. 98, 2917–2925 (1993)

    Article  Google Scholar 

  46. United States Environmental Protection Agency, Office of Air and Radiation, Sources of Bias in the Gas Analyzer. In An Operator’s guide to eliminating bias in CEM systems, United States Environmental Protection Agency. http://www.epa.gov/airmarkets/emissions/bias.html (1994).

  47. Wagner, N., Dubé, W., Washenfelder, R., Young, C., Pollack, I., Ryerson, T., Brown, S.: Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft. Atmos. Meas. Tech. 4, 1227–1240 (2011). doi:10.5194/amt-4-1227-2011

    Article  Google Scholar 

  48. Wooldridge, P.J., Perring, A.E., Bertram, T.H., Flocke, F.M., Roberts, J.M., Singh, H.B., Huey, L.G., Thornton, J.A., Wolfe, G.M., Murphy, J.G., Fry, J.L., Rollins, A.W., LaFranchi, B.W., Cohen, R.C.: Total peroxy nitrates (ΣPNs) in the atmosphere: the thermal dissociation –laser induced fluorescence (TD-LIF) technique and comparisons to speciated PAN measurements. Atmos. Meas. Tech. 3, 593–607 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The aircraft flights were funded by Maryland Department of the Environment and the National Oceanic and Atmospheric Administration (NOAA). From NIST we thank Dave Duewer for help with data analysis and Jim Norris for calibrating the ozone monitor and primary standard. We thank Winston Luke, Paul Kelley and Xinrong Ren from the (NOAA) for conducting a month long field comparison to their P-CL NO2 instrument. We thank Patricia Castellanos for instrument instruction and support. We thank NASA for supporting the DISCOVER-AQ air campaign and AURA and AQAST funding.

Disclaimer

The identification of certain commercial equipment, instruments, or materials does not imply recommendation or endorsement by the National Institute of Standards and Technology. These identifications are made only in order to specify the experimental procedures in adequate detail.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. C. Brent.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brent, L.C., Thorn, W.J., Gupta, M. et al. Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ. J Atmos Chem 72, 503–521 (2015). https://doi.org/10.1007/s10874-013-9265-6

Download citation

Keywords

  • Nitrogen dioxide
  • Cavity ringdown
  • Air quality
  • Regional smog
  • Flight measurements