Skip to main content

Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem

Abstract

Spatial and temporal dynamics in trace gas pollutants were examined over a major urban estuarine ecosystem, using a new network of ground-based Pandora spectrometers deployed at strategic locations along the Washington-Baltimore corridor and the Chesapeake Bay. Total column ozone (TCO3) and nitrogen dioxide (TCNO2) were measured during NASA’s DISCOVER-AQ and GeoCAPE-CBODAQ campaigns in July 2011. The Pandora network provided high-resolution information on air-quality variability, local pollution conditions, large-scale meteorological influences, and interdependencies of ozone and its major precursor, NO2. Measurements were used to compare with air-quality model simulations (CMAQ), evaluate Aura-OMI satellite retrievals, and assess advantages and limitations of space-based observations under a range of conditions. During the campaign, TCNO2 varied by an order of magnitude, both spatially and temporally. Although fairly constant in rural regions, TCNO2 showed clear diurnal and weekly patterns in polluted urban areas caused by changes in near-surface emissions. With a coarse resolution and an overpass at around 13:30 local time, OMI cannot detect this strong variability in NO2, missing pollution peaks from industrial and rush hour activities. Not as highly variable as NO2, TCO3 was mostly affected by large-scale meteorological patterns as observed by OMI. A clear weekly cycle in TCO3, with minima over the weekend, was due to a combination of weekly weather patterns and changes in near-surface NOx emissions. A Pandora instrument intercomparison under the same conditions at GSFC showed excellent agreement, within ±4.8DU for TCO3 and ±0.07DU for TCNO2 with no air-mass-factor dependence, suggesting that observed variability during the campaign was real.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ahmad, Z., McClain, C.R., Herman, J.R., Franz, B., Kwiatkowska, E., Robinson, W., Bucsela, E.J., Tzortziou, M.: Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements”. Appl. Opt. Laser Photonics Environ. Opt. 46(26), 6504–6512 (2007)

    Google Scholar 

  2. Bais, A.F.: Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer. Appl. Opt. 36, 5199–5204 (1997)

    Article  Google Scholar 

  3. Beirle, S., Platt, U., von Glasow, R., Wenig, M., Wagner, T.: Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophys. Res. Lett. 31, (2004). doi:10.1029/2004GL020312

  4. Bernhard, G., Booth, C.R., Ehramjian, J.C.: Version 2 data of the National Science Foundation’s Ultraviolet Radiation Monitoring Network: South Pole. J. Geophys. Res. 109, D21207 (2004). doi:10.1029/2004JD004937

    Article  Google Scholar 

  5. Bhartia, P.K., Wellemeyer, C.W.: OMI TOMS-V8 Total O3 Algorithm, Algorithm Theoretical Baseline Document: OMI Ozone Products. P. K. Bhartia (ed.), vol. II, ATBD-OMI-02, version 2.0 (2002)

  6. Boersma, K.F., Bucsela, E., Brinksma, E., Gleason, J.F.: NO2, Algorithm Theoretical Baseline Document: OMI Trace Gas Algorithms, K.Chance (ed.), vol. IV, ATBD-OMI-04, version 2.0 (2002)

  7. Boersma, K.F., Eskes, H.J., Meijer, E.W., Kelder, H.M.: Estimates of lightning NOx production from GOME satellite observations. Atmos. Phys. Chem. 5, 2311–2331 (2005)

    Article  Google Scholar 

  8. Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksma, E.J., van der A, R.J., Sneep, M., van den Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason, J.F., Bucsela, E.J.: Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 7(8), 2103–2118 (2007)

    Article  Google Scholar 

  9. Boersma, K.F., Jacob, D.J., Eskes, H.J., Pinder, R.W., Wang, J., van der A, R.J.: Inter-comparison of SCIAMACHY and OMI tropospheric NO2 columns: observing the diurnal evolution of chemistry and emissions from space. J. Geophys. Res. 113, (2008). doi:10.1029/2007JD008816

  10. Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., Manning, W., Krupa, S., Chappelka, A., Grantz, D.: The ozone component of global change: potential effects on agricultural an horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 51, 337–351 (2009)

    Article  Google Scholar 

  11. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: SCIAMACHY: mission objectives and measurement modes. J. Atmos. Sci. 56(2), 127–150 (1999)

    Article  Google Scholar 

  12. Bucsela, E.J., Celarier, E.A., Wenig, M.O., Gleason, J.F., Veefkind, J.P., Folkert Boersma, K., Brinksma, E.J.: Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, (2006). doi:10.1109/TGRS.2005.863715

  13. Burrows, J.P., Weber, M., Buchwitz, M., Rozanov, V., Ladstatter-Weissenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.U., Eisinger, M.: The global ozone monitoring experiment (GOME): mission concept and first scientific results. J. Atmos Sci. 56(2), 151–175 (1999)

    Article  Google Scholar 

  14. Byun, D., Schere, K.L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51–77 (2006)

    Article  Google Scholar 

  15. Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., Lefebvre, A.: GOME-2: Metop’s second generation sensor for operational ozone monitoring. ESA Bull. 102, 28–36 (2000)

    Google Scholar 

  16. Carder, K.L., Chen, F.R., Lee, Z.P., Hawes, S.K., Kamykowski, D.: Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res. 104(C3), 5403–5421 (1999)

    Article  Google Scholar 

  17. Castro, M.S., Driscoll, C.T., Jordan, T.E., Reay, W.G., Boynton, W.R.: Sources of nitrogen to estuaries in the United States. Estuaries 26(3), 803–814 (2003)

    Article  Google Scholar 

  18. Celarier, E.A., et al.: Validation of ozone monitoring instrument nitrogen dioxide columns. J. Geophys. Res. 113, D15S15 (2008). doi:10.1029/2007JD008908

    Google Scholar 

  19. Choi, Y. et al.: Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. Geophys. Res. Lett. 32 (2005)

  20. Intergovernmental Panel on Climate Change: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge (2007)

  21. Crutzen, P.J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth Planet. Sci. 7, 443–472 (1979)

    Article  Google Scholar 

  22. Crutzen, P.J.: Ozone in the troposphere. In: Singh, H.B. (ed.) Composition, chemistry and climate of the atmosphere, pp. 349–393. Van Nostrand Reinhold, New York (1995)

    Google Scholar 

  23. Daumont, M., Brion, J., Charbonnier, J., Malicet, J.: Ozone UV spectroscopy, I: absorption cross-sections at room temperature. J. Atmos. Chem. 15, 145–155 (1992)

    Article  Google Scholar 

  24. Dennis R.L.: Model estimated oxidized nitrogen deposition not covered by the networks with a focus on urban deposition, NADP 2007 Scientific Symposium, Boulder (2007)

  25. Environmental Protection Agency: National air quality and emissions trends report 1998, Rep. EPA 454/R-00-003 (1998)

  26. Environmental Protection Agency: Overview of the Human Health and Environmental Effects of Power Generation: Focus on Sulfur Dioxide (SO2), Nitrogen Oxides (NOx) and Mercury (Hg), (2002) http://www.epa.gov/air/clearskies/pdfs/overview.pdf

  27. Fishman, J., Creilson, J.K., Parker, P.A., Ainsworth, E.A., Vining, G.G., Szarka, J., Booker, F.L., Xu, X.: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmos. Environ. 44, 2248–2256 (2010)

    Article  Google Scholar 

  28. Fishman, J., Iraci, L.T., Al-Saadi, J., Bontempi, P., Chance, K., Chavez, F., Chin, M., Coble, P., Davis, C., DiGiacomo, P., Edwards, D., Eldering, A., Goes, J., Herman, J., Hu, C., Jacob, D., Jordan, C., Kawa, S.R., Key, R., Liu, X., Lohrenz, S., Mannino, A., Natraj, V., Neil, D., Neu, J., Newchurch, M., Pickering, K., Salisbury, J., Sosik, H., Subramaniam, A., Tzortziou, M., Wang, J., Wang, M.: “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO APE) Mission”. Bull. Am. Meteorol. Soc. (2012)

  29. Gordon, H.R.: Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 102(D14), 17081–17106 (1997)

    Article  Google Scholar 

  30. Grobner, J., Kerr, J.B.: Ground-dased determination of ultraviolet extraterrestrial solar irradiance: providing a link between space-based and ground-based solar UV measurements. J. Geophys. Res. 106(D7), 7211–7217 (2001)

    Article  Google Scholar 

  31. Gu, B., Zhu, Y., Chang, J., Peng, C., Liu, D., Min, Y., Luo, W., Howarth, R.W., Ge, Y.: The role of technology and policy in mitigating regional nitrogen pollution. Env. Res. Lett. 6, 014011 (2011). doi:10.1088/1748-9326/6/1/014011

    Article  Google Scholar 

  32. Herman, J.R., Cede, A., Spinei, E., Mount, G., Tzortziou, M., Abuhassan, N.: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: intercomparisons and application to OMI validation. JGR-Atmos. 114, D13307 (2009). doi:10.1029/2009JD011848

    Article  Google Scholar 

  33. Jickells, T.: The role of air-sea exchange in the marine nitrogen cycle. Biogeosci. Discuss. 3, 183–210 (2006)

    Article  Google Scholar 

  34. Krotkov, N.A., and the OMI NO2 Algorithm Team: OMNO2 README File, Document Version 6.2 (2012) http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/OMNO2_readme_v003.pdf

  35. Kurucz, R.L.: New atlases for solar flux, irradiance, central intensity, and limb intensity. Presented at the workshop “ATLAS12 and related codes” held in Trieste 11–15 July, 2005 to be published on Memorie della Socienta Astronomica Italiana Supplementi 8, 158–160 (2005)

  36. Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Ma¨lkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J.O.V., Saari, H.: The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44(5), 1093–1101 (2006)

    Article  Google Scholar 

  37. Loughner, C.P., Allen, D.J., Pickering, K.E., Dickerson, R.R., Zhang, D.-L., Shou, Y.-X.: Impact of the Chesapeake Bay breeze and fair-weather cumulus clouds on pollutant transport and transformation. Atmos. Environ. 45, 4060–4072 (2011)

    Article  Google Scholar 

  38. Loughner, C.P., Tzortziou ,M., Follette-Cook, M., Pickering, K.E., Goldberg, D., Satam, C., Weinheimer, A., Crawford, J.H., Knapp, D.J., Montzka, D.D., Diskin, G.B., Marufu, L.T., Dickerson, R.R.:Impact of bay breeze circulations on surface air quality and boundary layer export, submitted to Atmospheric Environment (2013)

  39. Mannino, A., Russ, M.E., Hooker, S.B.: Algorithm development for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J. Geophys. Res. C07051, (2008). doi:10.1029/2007JC004493

  40. O’Reilly, J.E., Maritorena, S., O’Brien, M.C., Siegel, D.A., Toole, D., Menzies, D., Smith, R.C., Mueller, J.L., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P., Cota, G.F., Hooker, S.B., McClain, C., Carder, K.L., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G.F., Aiken, J., Arrigo, K.R., Letelier, R., Culver, M.: Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In: Hooker, S.B., Firestone, E.R. (eds.) SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3 (pp. 9–23). NASA Tech. Memo. 2000-206892, Vol. 11. NASA Goddard Space Flight Center, Greenbelt (2000)

    Google Scholar 

  41. OAQPS Staff Paper: Review of National Ambient Air Quality Standards for Ozone - Assessment of Scientific and Technical Information. Office of Air Quality Planning and Standards, EPA (1996)

  42. Palmer, P.I., Jacob, D.J., Chance, K., Martin, R.V., Spurr, R.J.D., Kurosu, T.P., Bey, I., Yantosca, R., Fiore, A.: Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the global ozone monitoring experiment. J. Geophys. Res. 106, 14539 (2001)

    Article  Google Scholar 

  43. Parrish, D.D., Millet, D.B., Goldstein, A.H.: Increasing ozone concentrations in marine boundary layer air inflow at the west coasts of North America and Europe. Atmos. Chem. Phys. 9, 1303e1323 (2009)

    Article  Google Scholar 

  44. Pineda Rojas, A.L., Venegas, L.E.: Atmospheric deposition of nitrogen emitted in the Metropolitan Area of Buenos Aires to coastal waters of de la Plata River. Atmos. Environ. 43, 1339–1348 (2009)

    Article  Google Scholar 

  45. Platt, U.: Differential Optical Absorption Spectroscopy(DOAS), in: air monitoring by Spectroscopic Techniques, edited by: Sigrist, M. W. Chem. Anal. 127, 27–76 (1994)

    Google Scholar 

  46. Reed A.J., Thompson, A.M., Kollonige, D.E., Martins, D.K., Tzortziou, M.A., Herman, J.R., Berkoff, T.A., Abuhassan, N.K., Cede, A: Effects of Local Meteorology and Aerosols on Ozone and Nitrogen Dioxide Retrievals from OMI and Pandora Spectrometers in Maryland, USA during DISCOVER-AQ 2011. J. Atmos. Chem. (This Issue)

  47. Richter, A., Burrows, J.P., Nüs zlig, H., Granier, C., Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space (and Supplementary Discussion on: error estimates for changes in tropospheric NO2 columns as derived from satellite measurements). Nature 437, 129–132 (2005)

    Article  Google Scholar 

  48. Sanders, G.E., Colls, J.J., Clark, A.G.: Physiological changes to Phaseolus vulgarisin response to long-term ozone exposure. Ann. Bot. 69, 123–133 (1992)

    Google Scholar 

  49. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics – from air pollution to climate change. John Wiley & Sons, New York (1998)

    Google Scholar 

  50. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.L., Duda, M.G., Huang, X.-Y., Wang, W., Powers, J.G.: A description of the Advanced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR. NCAR, Boulder (2008)

    Google Scholar 

  51. Solomon, S.: Stratospheric ozone depletion: a review of concepts and history. Revs. Geophys. 37, 275–316 (1999)

    Article  Google Scholar 

  52. STAC Publ. 09-001: Workshop on Atmospheric Deposition of Nitrogen, Chesapeake Bay Program, Science and Technical Advisory Committee, January 8, 2009, Held May 30, 2007 at the State University of New York, Binghamton, NY, Co-Chairs: R. Entringer and R. Howarth (2009)

  53. Tzortziou, M., Herman, J.R., Cede, A., Abuhassan, N.: High precision, absolute total column ozone measurements from the Pandora spectrometer system: comparisons with data from a Brewer double monochromator and Aura OMI. J. Geophys. Res. 117, D16303 (2012). doi:10.1029/2012JD017814

    Article  Google Scholar 

  54. Van Hoosier, M.E.: The ATLAS-3 solar spectrum, available via anonymous ftp (1996) (ftp://susim.nrl.navy.mil/pub/atlas3)

  55. Vandaele, A.C., Hermans, C., Simon, P.C., Carleer, M., Colin, R., Fally, S., Mérienne, M.F., Jenouvrier, A., Coquart, B.: Measurements of the NO2 absorption cross-section from 42 000 cm–1 to 10 000 cm–1 (238–1,000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transfer 59(3–5), 171–184 (1998)

    Article  Google Scholar 

  56. Velders, G.J.M., Grainer, C., Portmann, R.W., Pfeilsticker, K., Weing, M., Wagner, T., Platt, U., Richter, A., and Burrows, J.P.: Global tropospheric NO2 column distributions: Comparing three-dimensional model calculations with GOME measurements, J. Geophys. Res. 106(D12) (2001)

  57. Vingarzan, R.: A review of surface ozone background levels and trends. Atmos. Environ. 38, 3431e–3442e (2004)

    Article  Google Scholar 

  58. Wang, S., Pongetti, T.J., Sander, S.P., Spinei, E., Mount, G.H., Cede, A., Herman, J.: Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers. J. Geophys. Res. 115, D13305 (2010). doi:10.1029/2009JD013503

    Article  Google Scholar 

  59. Wenig, M., Spichtinger, N., Stohl, A., Held, G., Beirle, S., Wagner, T., Jahne, B., Platt, U.: Intercontinental transport of nitrogen oxide pollution plumes. Atmos. Chem. Phys. 3, 387–393 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported under the National Aeronautics and Space Administration (NASA) DISCOVER-AQ project (Grant: NNX10AR39G) and the NASA CBODAQ field campaign, with additional support from grants NASA.NNX10AQ79G and NASA.NNX11AP07G. The authors would like to thank Christian Retscher, James H. Crawford, Kenneth E. Pickering, Antonio Mannino, and two anonymous reviewers for their constructive comments and suggestions for improvement of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Tzortziou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tzortziou, M., Herman, J.R., Cede, A. et al. Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem. J Atmos Chem 72, 287–309 (2015). https://doi.org/10.1007/s10874-013-9255-8

Download citation

Keywords

  • Ozone
  • Nitrogen dioxide
  • Atmospheric variability
  • Urban
  • Coastal
  • Remote sensing