Advertisement

Journal of Atmospheric Chemistry

, Volume 72, Issue 3–4, pp 287–309 | Cite as

Spatial and temporal variability of ozone and nitrogen dioxide over a major urban estuarine ecosystem

  • Maria TzortziouEmail author
  • Jay R. Herman
  • Alexander Cede
  • Christopher P. Loughner
  • Nader Abuhassan
  • Sheenali Naik
Article

Abstract

Spatial and temporal dynamics in trace gas pollutants were examined over a major urban estuarine ecosystem, using a new network of ground-based Pandora spectrometers deployed at strategic locations along the Washington-Baltimore corridor and the Chesapeake Bay. Total column ozone (TCO3) and nitrogen dioxide (TCNO2) were measured during NASA’s DISCOVER-AQ and GeoCAPE-CBODAQ campaigns in July 2011. The Pandora network provided high-resolution information on air-quality variability, local pollution conditions, large-scale meteorological influences, and interdependencies of ozone and its major precursor, NO2. Measurements were used to compare with air-quality model simulations (CMAQ), evaluate Aura-OMI satellite retrievals, and assess advantages and limitations of space-based observations under a range of conditions. During the campaign, TCNO2 varied by an order of magnitude, both spatially and temporally. Although fairly constant in rural regions, TCNO2 showed clear diurnal and weekly patterns in polluted urban areas caused by changes in near-surface emissions. With a coarse resolution and an overpass at around 13:30 local time, OMI cannot detect this strong variability in NO2, missing pollution peaks from industrial and rush hour activities. Not as highly variable as NO2, TCO3 was mostly affected by large-scale meteorological patterns as observed by OMI. A clear weekly cycle in TCO3, with minima over the weekend, was due to a combination of weekly weather patterns and changes in near-surface NOx emissions. A Pandora instrument intercomparison under the same conditions at GSFC showed excellent agreement, within ±4.8DU for TCO3 and ±0.07DU for TCNO2 with no air-mass-factor dependence, suggesting that observed variability during the campaign was real.

Keywords

Ozone Nitrogen dioxide Atmospheric variability Urban Coastal Remote sensing 

Notes

Acknowledgments

This work was supported under the National Aeronautics and Space Administration (NASA) DISCOVER-AQ project (Grant: NNX10AR39G) and the NASA CBODAQ field campaign, with additional support from grants NASA.NNX10AQ79G and NASA.NNX11AP07G. The authors would like to thank Christian Retscher, James H. Crawford, Kenneth E. Pickering, Antonio Mannino, and two anonymous reviewers for their constructive comments and suggestions for improvement of the manuscript.

References

  1. Ahmad, Z., McClain, C.R., Herman, J.R., Franz, B., Kwiatkowska, E., Robinson, W., Bucsela, E.J., Tzortziou, M.: Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements”. Appl. Opt. Laser Photonics Environ. Opt. 46(26), 6504–6512 (2007)Google Scholar
  2. Bais, A.F.: Absolute spectral measurements of direct solar ultraviolet irradiance with a Brewer spectrophotometer. Appl. Opt. 36, 5199–5204 (1997)CrossRefGoogle Scholar
  3. Beirle, S., Platt, U., von Glasow, R., Wenig, M., Wagner, T.: Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophys. Res. Lett. 31, (2004). doi: 10.1029/2004GL020312
  4. Bernhard, G., Booth, C.R., Ehramjian, J.C.: Version 2 data of the National Science Foundation’s Ultraviolet Radiation Monitoring Network: South Pole. J. Geophys. Res. 109, D21207 (2004). doi: 10.1029/2004JD004937 CrossRefGoogle Scholar
  5. Bhartia, P.K., Wellemeyer, C.W.: OMI TOMS-V8 Total O3 Algorithm, Algorithm Theoretical Baseline Document: OMI Ozone Products. P. K. Bhartia (ed.), vol. II, ATBD-OMI-02, version 2.0 (2002)Google Scholar
  6. Boersma, K.F., Bucsela, E., Brinksma, E., Gleason, J.F.: NO2, Algorithm Theoretical Baseline Document: OMI Trace Gas Algorithms, K.Chance (ed.), vol. IV, ATBD-OMI-04, version 2.0 (2002)Google Scholar
  7. Boersma, K.F., Eskes, H.J., Meijer, E.W., Kelder, H.M.: Estimates of lightning NOx production from GOME satellite observations. Atmos. Phys. Chem. 5, 2311–2331 (2005)CrossRefGoogle Scholar
  8. Boersma, K.F., Eskes, H.J., Veefkind, J.P., Brinksma, E.J., van der A, R.J., Sneep, M., van den Oord, G.H.J., Levelt, P.F., Stammes, P., Gleason, J.F., Bucsela, E.J.: Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 7(8), 2103–2118 (2007)CrossRefGoogle Scholar
  9. Boersma, K.F., Jacob, D.J., Eskes, H.J., Pinder, R.W., Wang, J., van der A, R.J.: Inter-comparison of SCIAMACHY and OMI tropospheric NO2 columns: observing the diurnal evolution of chemistry and emissions from space. J. Geophys. Res. 113, (2008). doi: 10.1029/2007JD008816
  10. Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., Manning, W., Krupa, S., Chappelka, A., Grantz, D.: The ozone component of global change: potential effects on agricultural an horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 51, 337–351 (2009)CrossRefGoogle Scholar
  11. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noel, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: SCIAMACHY: mission objectives and measurement modes. J. Atmos. Sci. 56(2), 127–150 (1999)CrossRefGoogle Scholar
  12. Bucsela, E.J., Celarier, E.A., Wenig, M.O., Gleason, J.F., Veefkind, J.P., Folkert Boersma, K., Brinksma, E.J.: Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, (2006). doi: 10.1109/TGRS.2005.863715
  13. Burrows, J.P., Weber, M., Buchwitz, M., Rozanov, V., Ladstatter-Weissenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.U., Eisinger, M.: The global ozone monitoring experiment (GOME): mission concept and first scientific results. J. Atmos Sci. 56(2), 151–175 (1999)CrossRefGoogle Scholar
  14. Byun, D., Schere, K.L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51–77 (2006)CrossRefGoogle Scholar
  15. Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., Lefebvre, A.: GOME-2: Metop’s second generation sensor for operational ozone monitoring. ESA Bull. 102, 28–36 (2000)Google Scholar
  16. Carder, K.L., Chen, F.R., Lee, Z.P., Hawes, S.K., Kamykowski, D.: Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res. 104(C3), 5403–5421 (1999)CrossRefGoogle Scholar
  17. Castro, M.S., Driscoll, C.T., Jordan, T.E., Reay, W.G., Boynton, W.R.: Sources of nitrogen to estuaries in the United States. Estuaries 26(3), 803–814 (2003)CrossRefGoogle Scholar
  18. Celarier, E.A., et al.: Validation of ozone monitoring instrument nitrogen dioxide columns. J. Geophys. Res. 113, D15S15 (2008). doi: 10.1029/2007JD008908 Google Scholar
  19. Choi, Y. et al.: Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. Geophys. Res. Lett. 32 (2005)Google Scholar
  20. Intergovernmental Panel on Climate Change: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge (2007)Google Scholar
  21. Crutzen, P.J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth Planet. Sci. 7, 443–472 (1979)CrossRefGoogle Scholar
  22. Crutzen, P.J.: Ozone in the troposphere. In: Singh, H.B. (ed.) Composition, chemistry and climate of the atmosphere, pp. 349–393. Van Nostrand Reinhold, New York (1995)Google Scholar
  23. Daumont, M., Brion, J., Charbonnier, J., Malicet, J.: Ozone UV spectroscopy, I: absorption cross-sections at room temperature. J. Atmos. Chem. 15, 145–155 (1992)CrossRefGoogle Scholar
  24. Dennis R.L.: Model estimated oxidized nitrogen deposition not covered by the networks with a focus on urban deposition, NADP 2007 Scientific Symposium, Boulder (2007)Google Scholar
  25. Environmental Protection Agency: National air quality and emissions trends report 1998, Rep. EPA 454/R-00-003 (1998)Google Scholar
  26. Environmental Protection Agency: Overview of the Human Health and Environmental Effects of Power Generation: Focus on Sulfur Dioxide (SO2), Nitrogen Oxides (NOx) and Mercury (Hg), (2002) http://www.epa.gov/air/clearskies/pdfs/overview.pdf
  27. Fishman, J., Creilson, J.K., Parker, P.A., Ainsworth, E.A., Vining, G.G., Szarka, J., Booker, F.L., Xu, X.: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmos. Environ. 44, 2248–2256 (2010)CrossRefGoogle Scholar
  28. Fishman, J., Iraci, L.T., Al-Saadi, J., Bontempi, P., Chance, K., Chavez, F., Chin, M., Coble, P., Davis, C., DiGiacomo, P., Edwards, D., Eldering, A., Goes, J., Herman, J., Hu, C., Jacob, D., Jordan, C., Kawa, S.R., Key, R., Liu, X., Lohrenz, S., Mannino, A., Natraj, V., Neil, D., Neu, J., Newchurch, M., Pickering, K., Salisbury, J., Sosik, H., Subramaniam, A., Tzortziou, M., Wang, J., Wang, M.: “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO APE) Mission”. Bull. Am. Meteorol. Soc. (2012)Google Scholar
  29. Gordon, H.R.: Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 102(D14), 17081–17106 (1997)CrossRefGoogle Scholar
  30. Grobner, J., Kerr, J.B.: Ground-dased determination of ultraviolet extraterrestrial solar irradiance: providing a link between space-based and ground-based solar UV measurements. J. Geophys. Res. 106(D7), 7211–7217 (2001)CrossRefGoogle Scholar
  31. Gu, B., Zhu, Y., Chang, J., Peng, C., Liu, D., Min, Y., Luo, W., Howarth, R.W., Ge, Y.: The role of technology and policy in mitigating regional nitrogen pollution. Env. Res. Lett. 6, 014011 (2011). doi: 10.1088/1748-9326/6/1/014011 CrossRefGoogle Scholar
  32. Herman, J.R., Cede, A., Spinei, E., Mount, G., Tzortziou, M., Abuhassan, N.: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: intercomparisons and application to OMI validation. JGR-Atmos. 114, D13307 (2009). doi: 10.1029/2009JD011848 CrossRefGoogle Scholar
  33. Jickells, T.: The role of air-sea exchange in the marine nitrogen cycle. Biogeosci. Discuss. 3, 183–210 (2006)CrossRefGoogle Scholar
  34. Krotkov, N.A., and the OMI NO2 Algorithm Team: OMNO2 README File, Document Version 6.2 (2012) http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/OMNO2_readme_v003.pdf
  35. Kurucz, R.L.: New atlases for solar flux, irradiance, central intensity, and limb intensity. Presented at the workshop “ATLAS12 and related codes” held in Trieste 11–15 July, 2005 to be published on Memorie della Socienta Astronomica Italiana Supplementi 8, 158–160 (2005)Google Scholar
  36. Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Ma¨lkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J.O.V., Saari, H.: The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44(5), 1093–1101 (2006)CrossRefGoogle Scholar
  37. Loughner, C.P., Allen, D.J., Pickering, K.E., Dickerson, R.R., Zhang, D.-L., Shou, Y.-X.: Impact of the Chesapeake Bay breeze and fair-weather cumulus clouds on pollutant transport and transformation. Atmos. Environ. 45, 4060–4072 (2011)CrossRefGoogle Scholar
  38. Loughner, C.P., Tzortziou ,M., Follette-Cook, M., Pickering, K.E., Goldberg, D., Satam, C., Weinheimer, A., Crawford, J.H., Knapp, D.J., Montzka, D.D., Diskin, G.B., Marufu, L.T., Dickerson, R.R.:Impact of bay breeze circulations on surface air quality and boundary layer export, submitted to Atmospheric Environment (2013)Google Scholar
  39. Mannino, A., Russ, M.E., Hooker, S.B.: Algorithm development for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight. J. Geophys. Res. C07051, (2008). doi: 10.1029/2007JC004493
  40. O’Reilly, J.E., Maritorena, S., O’Brien, M.C., Siegel, D.A., Toole, D., Menzies, D., Smith, R.C., Mueller, J.L., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P., Cota, G.F., Hooker, S.B., McClain, C., Carder, K.L., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G.F., Aiken, J., Arrigo, K.R., Letelier, R., Culver, M.: Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In: Hooker, S.B., Firestone, E.R. (eds.) SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3 (pp. 9–23). NASA Tech. Memo. 2000-206892, Vol. 11. NASA Goddard Space Flight Center, Greenbelt (2000)Google Scholar
  41. OAQPS Staff Paper: Review of National Ambient Air Quality Standards for Ozone - Assessment of Scientific and Technical Information. Office of Air Quality Planning and Standards, EPA (1996)Google Scholar
  42. Palmer, P.I., Jacob, D.J., Chance, K., Martin, R.V., Spurr, R.J.D., Kurosu, T.P., Bey, I., Yantosca, R., Fiore, A.: Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the global ozone monitoring experiment. J. Geophys. Res. 106, 14539 (2001)CrossRefGoogle Scholar
  43. Parrish, D.D., Millet, D.B., Goldstein, A.H.: Increasing ozone concentrations in marine boundary layer air inflow at the west coasts of North America and Europe. Atmos. Chem. Phys. 9, 1303e1323 (2009)CrossRefGoogle Scholar
  44. Pineda Rojas, A.L., Venegas, L.E.: Atmospheric deposition of nitrogen emitted in the Metropolitan Area of Buenos Aires to coastal waters of de la Plata River. Atmos. Environ. 43, 1339–1348 (2009)CrossRefGoogle Scholar
  45. Platt, U.: Differential Optical Absorption Spectroscopy(DOAS), in: air monitoring by Spectroscopic Techniques, edited by: Sigrist, M. W. Chem. Anal. 127, 27–76 (1994)Google Scholar
  46. Reed A.J., Thompson, A.M., Kollonige, D.E., Martins, D.K., Tzortziou, M.A., Herman, J.R., Berkoff, T.A., Abuhassan, N.K., Cede, A: Effects of Local Meteorology and Aerosols on Ozone and Nitrogen Dioxide Retrievals from OMI and Pandora Spectrometers in Maryland, USA during DISCOVER-AQ 2011. J. Atmos. Chem. (This Issue)Google Scholar
  47. Richter, A., Burrows, J.P., Nüs zlig, H., Granier, C., Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space (and Supplementary Discussion on: error estimates for changes in tropospheric NO2 columns as derived from satellite measurements). Nature 437, 129–132 (2005)CrossRefGoogle Scholar
  48. Sanders, G.E., Colls, J.J., Clark, A.G.: Physiological changes to Phaseolus vulgarisin response to long-term ozone exposure. Ann. Bot. 69, 123–133 (1992)Google Scholar
  49. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics – from air pollution to climate change. John Wiley & Sons, New York (1998)Google Scholar
  50. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.L., Duda, M.G., Huang, X.-Y., Wang, W., Powers, J.G.: A description of the Advanced Research WRF Version 3, NCAR Technical Note, NCAR/TN-475+STR. NCAR, Boulder (2008)Google Scholar
  51. Solomon, S.: Stratospheric ozone depletion: a review of concepts and history. Revs. Geophys. 37, 275–316 (1999)CrossRefGoogle Scholar
  52. STAC Publ. 09-001: Workshop on Atmospheric Deposition of Nitrogen, Chesapeake Bay Program, Science and Technical Advisory Committee, January 8, 2009, Held May 30, 2007 at the State University of New York, Binghamton, NY, Co-Chairs: R. Entringer and R. Howarth (2009)Google Scholar
  53. Tzortziou, M., Herman, J.R., Cede, A., Abuhassan, N.: High precision, absolute total column ozone measurements from the Pandora spectrometer system: comparisons with data from a Brewer double monochromator and Aura OMI. J. Geophys. Res. 117, D16303 (2012). doi: 10.1029/2012JD017814 CrossRefGoogle Scholar
  54. Van Hoosier, M.E.: The ATLAS-3 solar spectrum, available via anonymous ftp (1996) (ftp://susim.nrl.navy.mil/pub/atlas3)
  55. Vandaele, A.C., Hermans, C., Simon, P.C., Carleer, M., Colin, R., Fally, S., Mérienne, M.F., Jenouvrier, A., Coquart, B.: Measurements of the NO2 absorption cross-section from 42 000 cm–1 to 10 000 cm–1 (238–1,000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transfer 59(3–5), 171–184 (1998)CrossRefGoogle Scholar
  56. Velders, G.J.M., Grainer, C., Portmann, R.W., Pfeilsticker, K., Weing, M., Wagner, T., Platt, U., Richter, A., and Burrows, J.P.: Global tropospheric NO2 column distributions: Comparing three-dimensional model calculations with GOME measurements, J. Geophys. Res. 106(D12) (2001)Google Scholar
  57. Vingarzan, R.: A review of surface ozone background levels and trends. Atmos. Environ. 38, 3431e–3442e (2004)CrossRefGoogle Scholar
  58. Wang, S., Pongetti, T.J., Sander, S.P., Spinei, E., Mount, G.H., Cede, A., Herman, J.: Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers. J. Geophys. Res. 115, D13305 (2010). doi: 10.1029/2009JD013503 CrossRefGoogle Scholar
  59. Wenig, M., Spichtinger, N., Stohl, A., Held, G., Beirle, S., Wagner, T., Jahne, B., Platt, U.: Intercontinental transport of nitrogen oxide pollution plumes. Atmos. Chem. Phys. 3, 387–393 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria Tzortziou
    • 1
    • 2
    Email author
  • Jay R. Herman
    • 3
    • 2
  • Alexander Cede
    • 4
    • 2
  • Christopher P. Loughner
    • 1
    • 2
  • Nader Abuhassan
    • 3
    • 2
  • Sheenali Naik
    • 5
  1. 1.University of MarylandEarth System Science Interdisciplinary CenterCollege ParkUSA
  2. 2.NASA/Goddard Space Flight CenterGreenbeltUSA
  3. 3.University of MarylandJoint Center for Earth Systems TechnologyBaltimoreUSA
  4. 4.LuftBlickKreithAustria
  5. 5.Environmental Science and Policy DepartmentUniversity of MarylandCollege ParkUSA

Personalised recommendations