Skip to main content

Advertisement

Log in

Relationship between stable isotope ratios and drop size distribution in tropical rainfall

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We carried out simultaneous measurements of drop size distribution (DSD) and stable oxygen and hydrogen isotopic compositions (δ18O and δD) of rain at the National Atmospheric Research Laboratory (NARL), Gadanki (13.5°N, 79.2°E), southern India, during September–October 2006, with the aim of understanding microphysical processes leading to rain formation. The MST radar at NARL was operated continuously during rain events, while rain samples were collected at very short time intervals (<1 h), to capture small changes (>0.2‰ and >2‰) in their δ18O and δD. The slope of the local meteoric water line (δD–δ18O line), was 8.07 ± 0.47, similar to that of global meteoric water line, confirming that the precipitation occurred under isotopic equilibrium, and was unaffected by some anomalous process; further, the evaporation of rain drops at the cloud base was insignificant. Whenever the isotopic variations were larger during a rain event (>2‰) there was a significant negative correlation between the δ18O and DSD. The possible explanation is that larger drops are mostly associated with convective rather than stratiform rain, and 18O (and D) depletion in convective rain is relatively more. Bin-resolved microphysical models incorporating water isotopologues could benefit by considering drop size spectra, which could improve the match with stable isotope observations of precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atlas, D., Srivastava, R.C., Sekhon, R.S.: Doppler radar characterstics of precipitation at vertical incidence. Rev. Geophys. Space Phys. 11, 1–35 (1973)

    Article  Google Scholar 

  • Atlas, D., Ulbrich, C.W., Marks Jr., F.D., Amitai, E., Williams, C.R.: Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res. 104, 6155–6169 (1999)

    Article  Google Scholar 

  • Araguas-Araguas, L., Froehlich, K., Rozanski, K.: Stable isotopic composition of precipitation over south-east Asia. J. Geophys. Res. 103(D22), 28721–28742 (1998)

    Article  Google Scholar 

  • Baker, M.B.: Cloud Microphysics and Climate. Science 276, 1072–1078 (1997)

    Article  Google Scholar 

  • Barras, V., Simmonds, I.: Observation and modelling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J. Geophys. Res. 114, D23308 (2009)

    Article  Google Scholar 

  • Bolin, B.: On the use of tritium as a tracer for water in nature. Proceedings of 2nd International Conference on Peaceful Use of Atomic Energy 18, 336–343 (1958)

  • Bony, S., Risi, C., Vimeux, F.: Influence of convective processes on the isotopic composition (δ 18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean–Global Atmosphere–Coupled Ocean–atmosphere Response Experiment (TOGA-COARE) simulations. J. Geophys. Res. 113, D19305 (2008). doi:10.1029/2008JD009942

    Article  Google Scholar 

  • Breitenbach, S.F.M., Adkins, J.F., Meyer, H., Marwan, N., Kumar, K.K., Haug, G.H.: Strong influence of water vapour source dynamics on stable isotopes in precipitation observed in Southern Meghalaya. NE India. Earth. Planet. Sci. Lett. 292, 212–220 (2010)

    Article  Google Scholar 

  • Ciais, P., Jouzel, J.: Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes. J. Geophys. Res. 99, 16793–16803 (1994)

    Article  Google Scholar 

  • Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–149 (1957)

    Article  Google Scholar 

  • Craig, H., Gordon, L.I.: Stable Isotope in Oceanographic Studies and Paleotemperatures. V.Lischi e Figli, Pisa, 122 (1965)

  • Dansgaard, W.: Stable isotopes in precipitation. Tellus 16, 436–468 (1964)

    Article  Google Scholar 

  • Epstein, S., Mayeda, T.: Variation of O-18 content of water from natural sources. Geochimica Cosmochimica Acta 4, 213–224 (1953)

    Article  Google Scholar 

  • Foote, G.B., DuToit, P.S.: Terminal velocity of raindrops aloft. J. Appl. Meteor. 8, 249–253 (1969)

    Article  Google Scholar 

  • Friedman, I., Redfield, A.C., Schoen, B., Harris, J.: The variation of deuterium content of natural waters in the hydrological cycle. Rev. Geophy. 2, 177–224 (1964)

    Article  Google Scholar 

  • Gat, J.R.: Oxygen and Hydrogen isotope in Hydrologic cycle. Annu. Rev. Earth Planet Sci. 24, 225–262 (1996)

    Article  Google Scholar 

  • Gat, J.R.: Atmospheric water balance-the isotopic perspective. Hydrol. Processes 14, 1357–1369 (2000)

    Article  Google Scholar 

  • Gat, J.R., Matsui, E.: Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. J. Geophys. Res. 96 (D7), 13,179–113,188 (1991)

    Google Scholar 

  • Gedzelman, S.D., Arnold, R.: Modeling the isotopic composition of precipitation. J. Geophys. Res 99(D5), 10,455–410,471 (1994)

    Google Scholar 

  • Gedzelman, S.D., Lawrence, J.R.: The isotopic composition of cyclonic precipitation. J. App. Meteor 21, 1385–1404 (1982)

    Article  Google Scholar 

  • Gedzelman, S.D., Lawrence, J.R., White, J.W.C., Smiley, D.: The isotopic composition of precipitation at Mohonk Lake. New York: The amount effect. J. Geophys. Res 92, 1033–1040 (1987)

    Article  Google Scholar 

  • Gonfiantini, R.: The d-notation and the mass-spectrometric measurement techniques. In: Gat, J.R., Gonfiantini, R. (eds.) IAEA, Vienna 1981. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, pp. 103–142

  • Gonfiantini, R., Roche, M.A., Olivry, J.C., Onts, J.C., Zuppi, G.M.: The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 181, 147–167 (2001). doi:org/10.1016/S0009-2541(01)00279-0

    Article  Google Scholar 

  • He, H., Smith, R.B.: Stable isotope composition of water vapor in the atmospheric boundary layer above the forests on New England. J. Geophys. Res. 104, 11,657–611,673 (1999)

    Google Scholar 

  • Henderson-Sellers, A., McGuffie, K., Noone, D., Irannejad, P.: Using Stable Water Isotopes to Evaluate Basin-Scale Simulations of Surface Water Budgets. J. Hydrometeorol. 5, 805–822 (2004)

    Article  Google Scholar 

  • Johnson, K.R., Ingram, B.L.: Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 220, 365–377 (2004)

    Article  Google Scholar 

  • Jouzel, J.: Isotopes in cloud physics: Multiphase and multistage condensation process, Handbook of environmental isotope geochemistry. Elsevier Sci., New York. 2, 61–112 (1986)

    Google Scholar 

  • Jouzel, J.: Water Stable Isotopes: Atmospheric Composition in Polar Ice Core Studies. Treatise on Geochemistry 4, 213–243 (2003)

    Article  Google Scholar 

  • Jouzel, J., Merlivat, L.: Deuterium and oxygen 18 in precipitation, Modeling of the isotopic effects during snow formation. J. Geophys. Res. 89, 11,749–711,757 (1984)

    Google Scholar 

  • Jouzel, J., Merlivat, L., Lorius, C.: Deuterium excess in the East Antarctic ice core suggests higher relative humidity at the oceanic surface at the last glacial maximum. Nature 299, 688–691 (1982)

    Article  Google Scholar 

  • Joss, J., A. Waldvogel,: Raindrop size distribution and sampling size errors, J. Atmos. Sci., 566-569(1969).

  • Lawrence, J.R., Gedzelman, S.D., White, J.W.C., Smiley, D., Lazov, P.: Storm trajectories in the eastern US and the D/H isotopic composition of precipitation. Nature 296, 638–640 (1982)

    Article  Google Scholar 

  • Lee, J.-E., Fung, I.: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Process. (2007). doi:10.1002/hyp.6637

  • Miyake, Y., Matsubaya, O., Nishihara, C.: An isotopic study on meteoric precipitation. Pap. Meteorol. Geophys. 19, 243–266 (1968)

    Google Scholar 

  • Pendall, E.L., King, J.Y., Mosier, A.R., Morgan, J.A., Milchunas, D.: Stable isotope constraints on net ecosystem production under elevated CO2. In: Flanagan, L.B., Ehleringer, J.R., Pataki, D.E. (eds.) Stable isotopes and biosphere-atmospheric interactions: Processes and biological controls. Book Chapter, pp. 182–198. Elsevier, Inc, San Diego, CA (2005)

    Google Scholar 

  • Ramesh, R., Yadava, M.G.: Climate and water resources of India. Curr. Sci. 89(5), 818–824 (2005)

    Google Scholar 

  • Rao, T.N., Radhakrishna, B., Srivastava, R., Satyanarayana, T.M., Narayana Rao, D.N., Ramesh, R.: Inferring microphysical processes occurring in mesoscale convective systems from radar measurements and isotopic analysis. Geophys. Res. Lett. 35, L09813 (2008a). doi:09810.01029/02008GL033495

    Article  Google Scholar 

  • Rao, T.N., Kirankumar, N.V.P., Radhakrishna, B., Rao, D.N.: Classification of tropical precipitating systems using wind profiler spectral moments, Part I: Algorithm description and validation. J. Atmos. Oceanic Tech. 25, 884–897 (2008b)

    Article  Google Scholar 

  • Rao, T.N., Rao, D.N., Mohan, K., Raghavan, S.: Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res. 106, 17699–17711 (2001)

    Article  Google Scholar 

  • Risi, C., Bony, S., Vimeux, F., Chong, M., Descroix, L.: Evolution of water stable isotopic composition of rain sampled along Sahelian squall lines. Quart. J. Roy. Meteor. Soc. (2009). doi:10.1002/qj.1485

  • Risi, C., Bony, S., Vimeux, F.: Influence of convective processes on the isotopic composition (δ 18O and δD) of precipitation and water vapor in the tropics 2. Physical interpretation of the amount effect. J. Geophys. Res. 113, D19306 (2008). doi:10.1029/2008JD009943

    Article  Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., Gonfiantini, R.: Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (eds.) Climate Change in Continental Isotopic Records, pp. 1–36. AGU, Washington, DC (1993)

    Chapter  Google Scholar 

  • Rindsbereger, M., Jaffe, Sh, Rahamim, Sh, Gat, J.R.: Patterns of the isotopic composition of precipitation in time and space: data from the Israeli storm water collection programme. Tellus 42B, 263–271 (1993)

    Google Scholar 

  • Smith, R.B.: Deuterium in North Atlantic storm tops. J. Atmos. Sci. 49, 2041–2057 (1992)

    Article  Google Scholar 

  • Stewart, M.K.: Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops. J. Geophys. Res. 80, 1138–1146 (1975)

    Google Scholar 

  • Tokay, A., Short, D.A.: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol. 35, 355–371 (1996)

    Article  Google Scholar 

  • Yadava, M.G., Ramesh, R., Pandarinath, B.P.: A positive ‘amount effect’ in the Sahayadri (Western Ghats) rainfall. Current science 93(4), 560–564 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, R., Ramesh, R. & Rao, T.N. Relationship between stable isotope ratios and drop size distribution in tropical rainfall. J Atmos Chem 69, 23–31 (2012). https://doi.org/10.1007/s10874-012-9227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-012-9227-4

Keywords

Navigation