Journal of Atmospheric Chemistry

, Volume 63, Issue 3, pp 221–234 | Cite as

Experimental investigation of the scavenging of gaseous mercury by sea salt aerosol

  • Elizabeth G. Malcolm
  • Amanda C. Ford
  • Tara A. Redding
  • Matthew C. Richardson
  • Brianna M. Strain
  • Scott W. Tetzner


Sea salt aerosol may be an important sink for reactive gaseous mercury (RGM) in the marine boundary layer, reducing ambient RGM concentrations and transferring the mercury (Hg) to the oceans and coastal ecosystems. The goal of this study was to determine the affinity of gaseous mercury for sea salt aerosol (SSA) by conducting adsorption experiments with sea salt-coated sampling denuders. In the first set of experiments, ambient outdoor air was passed through denuders coated with either KCl, as in the widely accepted method to sample RGM, or with NaCl, a primary component of sea salt aerosols. On the one sampling day in which RGM was above the MDL, the NaCl coated denuders removed Hg from the ambient air, equivalent to 87% of the RGM in the air (as determined by KCl denuders). For the second set of experiments HgCl2 generated in the laboratory was passed through denuders coated with KCl and either NaCl or sea salt. The NaCl denuders collected an average of 99 ± 16% of the mercury that the KCl denuders collected. Newly coated sea salt denuders collected 88 ± 17% of the amount of mercury that the KCl denuders collected, but interestingly the sea salt denuders capacity decreased with repeated use. These experiments demonstrate that HgCl2, a major component of RGM has a strong affinity for NaCl and sea salt and is therefore likely to be scavenged by SSA. This study adds to the growing evidence that RGM is scavenged by sea salt aerosols and therefore more quickly deposited to the ocean and coastal environment.


Gas-particle partitioning Reactive gaseous mercury Atmospheric mercury Particulate mercury Marine boundary layer Sodium chloride 


  1. Appel, B.R.: Sampling of selected labile atmospheric pollutants. In: Newman, L. (ed.) Measurement Challenges in Atmospheric Chemistry, pp. 1-40. American Chemical Society, Washington (1993)Google Scholar
  2. Burkhardt, J., Eiden, R.: Thin water films on coniferous needles. Atmos Environ 28, 2001–2011 (1994)CrossRefGoogle Scholar
  3. CRC Handbook of Chemistry and Physics, 82nd ed. CRC Press, Boca Raton, FL (2009)Google Scholar
  4. Dumarey, R., Temmerman, E., Dams, R., Hoste, J.: The accuracy of the vapour-injection calibration method for the determination of mercury by amalgamation/cold vapour atomic absorption spectrometry. Anal Chim Acta 170, 337–340 (1985)CrossRefGoogle Scholar
  5. Engle, M.A., Tate, M.T., Krabbenhoft, D.P., Kolker, A., Olson, M.L., Edgerton, E.S., DeWild, J.F., McPherson, A.K.: Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Appl Geochem 23, 419–437 (2008)CrossRefGoogle Scholar
  6. Gustafsson, M.E.R., Franzen, L.G.: Inland transport of marine aerosols in southern Sweden. Atmos Environ 34, 313–325 (2000)CrossRefGoogle Scholar
  7. Hedgecock, I.M., Pirrone, N.: Mercury and photochemistry in the marine boundary layer—Modeling studies suggest the in situ production of reactive gas phase mercury. Atmos Environ 35, 3055–3062 (2001)CrossRefGoogle Scholar
  8. Holmes, C.D., Jacob, D.J., Mason, R.P.: Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmos Environ 43, 2278–2285 (2009)CrossRefGoogle Scholar
  9. Kraepiel, A.M.L., Keller, K., Chin, H.B., Malcolm, E.G., Morel, F.M.M.: Sources and variations of mercury in tuna. Environ Sci, Technol 37, 5551–5558 (2003)CrossRefGoogle Scholar
  10. Lamborg, C.H., Fitzgerald, W.F., O’Donnell, J., Torgersen, T.: A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica Et Cosmochimica Acta 66, 1105–118 (2002)CrossRefGoogle Scholar
  11. Landis, M.S., Stevens, R.K., Schadelick, F., Prestbo, E.M.: Development and characterization of an annular denuder methodology for the measurement of ambient (divalent) inorganic reactive gaseous mercury in ambient air. Environ Sci Technol 36, 3000–3009 (2002)CrossRefGoogle Scholar
  12. Lewis, E.R., Schwartz, S.E..: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models. American Geophysical Union, Washington, D.C. (2004)Google Scholar
  13. Lin, C.J., Pehkonen, S.O.: The chemistry of atmospheric mercury: a review. Atmos Environ 33, 2067–2079 (1999)CrossRefGoogle Scholar
  14. Lynam, M.M., Keeler, G.J.: Comparison of methods for particulate phase mercury analysis: sampling and analysis. Anal Bioanal Chem 374, 1009–1014 (2002)CrossRefGoogle Scholar
  15. Lynam, M.M., Keeler, G.J.: Artifacts associated with measurement of particulate mercury in an urban environment: the influence of elevated ozone concentrations. Atmos Environ 39, 3081–3088 (2005)CrossRefGoogle Scholar
  16. Malcolm, E.G., Keeler, G.J.: Measurements of mercury in dew: atmospheric removal of mercury species to a water surface. Environ Sci Technol 36, 2815–2821 (2002)CrossRefGoogle Scholar
  17. Malcolm, E.G., Keeler, G.J.: Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere. Atmos Environ 41, 3352–3359 (2007)CrossRefGoogle Scholar
  18. Malcolm E.G., Keeler G.J., Landis M.S.: The effects of the coastal environment on the atmospheric mercury cycle. J. Geophys. Res. 108 (D12), art. no. 4357, (2003) doi:10.1029/2002JD003084
  19. Patterson, E.M., Kiang, C.S., Delaney, A.C., Wartberg, A.F., Leslie, A.C.D., Huebert, B.J.: Global measurements of aerosols in remote continental and marine regions: concentrations, size distributions, and optical properties. J Geophys Res 85, 7361–7376 (1980)CrossRefGoogle Scholar
  20. Pirrone, N., Hedgecock, I.M., Forlano, L.: Role of the ambient aerosol in the atmospheric processing semivolatile contaminants: A parameterized numerical model (Gas-Particle Partitioning (GASPAR)). J Geophys Res-Atmospheres 105(D8), 9773–9790 (2000)CrossRefGoogle Scholar
  21. Rutter, A.P., Schauer, J.J.: The impact of aerosol composition on the particle gas partitioning of reactive mercury. Environ Sci Technol 41, 3934–3939 (2007)CrossRefGoogle Scholar
  22. Sander, R., Crutzen, P.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J Geophys Res 101, 9121–9138 (1996)CrossRefGoogle Scholar
  23. Schroeder, W.H., Munthe, J.: Atmospheric mercury—an overview. Atmos Environ 32, 809–822 (1998)CrossRefGoogle Scholar
  24. Seigneur, C., Lohman, K.: Effect of bromine chemistry on the atmospheric mercury cycle. J Geophys Res 113, D23309 (2008). doi:10.1029/2008JD010262 CrossRefGoogle Scholar
  25. Selin, N.E.: Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resource 34, 43–63 (2009)CrossRefGoogle Scholar
  26. Selin, N.E., Jacob, D.J.: Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources. Atmos Environ 42(21), 5193–5204 (2008)CrossRefGoogle Scholar
  27. Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaeglé, L., Jaffe, D.: Chemical cycling and deposition of atmospheric mercury: global constraints from observations. J Geophys Res 112, D02308 (2007). doi:10.1029/2006JD007450 Google Scholar
  28. Sprovieri, F., Pirrone, N.: Spatial and temporal distribution of atmospheric mercury species over the Adriatic Sea. Environ Fluid Mech 8, 117–128 (2008)CrossRefGoogle Scholar
  29. Sunderland, E.M., Krabbenhoft, D.P., Moreau J.W.: Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochem. Cycl. 23, art no. GB2010 (2009)Google Scholar
  30. Trujillo, A.P., Thurman, H.V.: Essentials of Oceanography, 9th edn. Pearson Prentice Hall, Upper Saddle River (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elizabeth G. Malcolm
    • 1
  • Amanda C. Ford
    • 1
  • Tara A. Redding
    • 1
  • Matthew C. Richardson
    • 1
  • Brianna M. Strain
    • 1
  • Scott W. Tetzner
    • 1
  1. 1.Department of Earth and Environmental Science1584 Wesleyan DriveNorfolkUSA

Personalised recommendations