Skip to main content
Log in

Automated mechanism generation. Part 1: mechanism development and rate constant estimation for VOC chemistry in the atmosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A framework for automated mechanism generation for modeling atmospheric chemistry at the mechanistic level was developed. In part 1, categorization of reactions into reaction families and determination of rate coefficients using a hierarchical approach that uses experimental data and kinetic correlations are described. The main focus was to develop kinetic correlations for estimating rate coefficients that are not available experimentally, and the main correlation used was the Evans–Polanyi relationship that relates the activation energy to the heat of reaction. A hierarchical scheme for calculating heats of reaction and other thermodynamic properties was developed. The rate constants calculated using the proposed correlations are in most cases within an order of magnitude of available experimental values, and 82% are within a factor of five.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbatt, J.P.D., Demerjian, K.L., Anderson, J.G.: A new approach to free-radical kinetics: radially and axially resolved high-pressure discharge flow with results for OH + (C2H6, C3H8, n-C4H10, n-C5H12) → products at 297 K. J. Phys. Chem. 94(11), 4566–4575 (1990)

    Article  Google Scholar 

  • Aschmann, S.M., Martin, P., Tuazon, E.C., Arey, J., Atkinson, R.: Kinetic and product studies of the reactions of selected glycol ethers with OH radicals. Environ. Sci. Technol. 35(20), 4080–4088 (2001)

    Article  Google Scholar 

  • Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds—compounds under atmospheric conditions. Chem. Rev. 86(1), 69–201 (1986)

    Article  Google Scholar 

  • Atkinson, R.: A structure-activity relationship for the estimation of rate constants for the gas-phase reaction of OH radicals with organic compounds. Int. J. Chem. Kinet. 19(9), 799–828 (1987)

    Article  Google Scholar 

  • Atkinson, R.: Atmospheric reactions of alkoxy and β-hydroxyalkoxy radicals. Int. J. Chem. Kinet. 29(2), 99–111 (1997)

    Article  Google Scholar 

  • Atkinson, R.: Atmospheric chemistry of VOCs and NO x . Atmos. Environ. 34(12–14), 2063–2101 (2000)

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement III. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 18(2), 881–1097 (1989)

    Article  Google Scholar 

  • Atkinson, R., Kwok, E.S.C., Arey, J., Aschmann, S.M.: Reactions of alkoxyl radicals in the atmosphere. Faraday Discuss. 100, 23–37 (1995)

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI—IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26(6), 1329–1499 (1997a)

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V—IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26(3), 521–1011 (1997b)

    Article  Google Scholar 

  • Atkinson, R., Tuazon, E.C., Aschmann, S.M.: Atmospheric chemistry of 2-pentanone and 2-heptanone. Environ. Sci. Technol. 34(4), 623–631 (2000)

    Article  Google Scholar 

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Jr., Kerr, J.A., Rossi, M.J., Troe, J.: Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Tech. Rep., Web Version (2001)

  • Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Jr., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of O x , HO x , NO x and SO x species. Atmos. Chem. Phys. 4, 1461–1738 (2004)

    Article  Google Scholar 

  • Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 5, 2497–2517 (2005)

    Article  Google Scholar 

  • Baboul, A.G., Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 110(16), 7650–7657 (1999)

    Article  Google Scholar 

  • Becker, E., Rahman, M.M., Schindler, R.N.: Determination of the rate constants for the gas phase reactions of NO3 with H, OH and HO2 radicals at 298 K. Ber. Bunsenges. Phys. Chem. 96, 776–783 (1992)

    Google Scholar 

  • Benson, S.W.: Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters. Wiley, New York (1968)

    Google Scholar 

  • Blowers, P., Masel, R.I.: An extension of the Marcus equation for atom transfer reactions. J. Phys. Chem. A 103(35), 7047–7054 (1999)

    Article  Google Scholar 

  • Broadbelt, L.J., Stark, S.M., Klein, M.T.: Computer generated pyrolysis modeling: on-the-fly generation of species, reactions, and rates. Ind. Eng. Chem. Res. 33(4), 790–799 (1994a)

    Article  Google Scholar 

  • Broadbelt, L.J., Stark, S.M., Klein, M.T.: Computer generated reaction networks: on-the-fly calculation of species properties using computational quantum chemistry. Chem. Eng. Sci. 49(24B), 4991–5010 (1994b)

    Google Scholar 

  • Broadbelt, L.J., Stark, S.M., Klein, M.T.: Termination of computer-generated reaction mechanisms: species rank-based convergence criterion. Ind. Eng. Chem. Res. 34(8), 2566–2573 (1995)

    Article  Google Scholar 

  • Broadbelt, L.J., Stark, S.M., Klein, M.T.: Computer generated reaction modelling: decomposition and encoding algorithms for determining species uniqueness. Comput. Chem. Eng. 20(2), 113–129 (1996)

    Article  Google Scholar 

  • Calvert, J.G., Pitts, J.N., Jr.: Photochemistry. Wiley, New York (1966)

    Google Scholar 

  • Calvert, J.G., Atkinson, R., Kerr, J.A., Madronich, S., Moortgat, G.K., Wallington, T.J., Yarwood, G.: The Mechanisms of Atmospheric Oxidation of the Alkenes. Oxford University Press, New York (2000)

    Google Scholar 

  • Carter, W.P.L.: A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 24A(3), 481–518 (1990)

    Google Scholar 

  • Carter, W.P.L.: Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Tech. Rep., University of California, Riverside, California (2000). Final Report to California Air Resources Board

  • Carter, W.P.L., Atkinson, R.: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NO x . Int. J. Chem. Kinet. 28(7), 497–530 (1996)

    Article  Google Scholar 

  • Chen, C.-J., Bozzelli, J.W.: Kinetic analysis for HO2 addition to ethylene, propene, and isobutene, and thermochemical parameters of alkyl hydroperoxides and hydroperoxide alkyl radicals. J. Phys. Chem. A 104(21), 4997–5012 (2000)

    Article  Google Scholar 

  • Colson, A.-O., Becker, D., Eliezer, I., Sevilla, M.D.: Application of isodesmic reactions to the calculation of the enthalpies of Ḣ and ȮH addition to DNA bases: estimated heats of formation of DNA base radicals and hydrates. J. Phys. Chem. A 101(47), 8935–8941 (1997)

    Article  Google Scholar 

  • Curtiss, L.A., Redfern, P.C., Frurip, D.J.: Theoretical methods for computing enthalpies of formation of gaseous compounds. Rev. Comput. Chem. 15, 147–211 (2000)

    Article  Google Scholar 

  • DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Jr., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., Molina, M.J.: Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling, Evaluation No. 12. Tech. Rep., Jet Propulsion Laboratory, Pasadena, CA (1997)

  • Derwent, R.G., Jenkin, M.E., Saunders, S.M.: Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 30(2), 181–199 (1996)

    Article  Google Scholar 

  • DeWitt, M.J., Dooling, D.J., Broadbelt, L.J.: Computer generation of reaction mechanisms using quantitative rate information: application to long-chain hydrocarbon pyrolysis. Ind. Eng. Chem. Res. 39(7), 2228–2237 (2000)

    Article  Google Scholar 

  • Dibble, T.: Reactions of the alkoxy radicals formed following OH-addition to α-pinene and β-pinene. C-C bond scission reactions. J. Am. Chem. Soc. 123(18), 4228–4234 (2001)

    Article  Google Scholar 

  • Dodge, M.C.: Chemical oxidant mechanisms for air quality modeling: critical review. Atmos. Environ. 34(12–14), 2103–2130 (2000)

    Article  Google Scholar 

  • Donahue, N.M.: Revisiting the Hammond postulate: the role of reactant and product ionic states in regulating barrier heights, locations, and transition state frequencies. J. Phys. Chem. A 105(9), 1489–1497 (2001)

    Article  Google Scholar 

  • Donahue, N.M., Clarke, J.S., Anderson, J.G.: Predicting radical–molecule barrier heights: the role of the ionic surface. J. Phys. Chem. A 102(22), 3923–3933 (1998)

    Article  Google Scholar 

  • Dunlea, E.J., Ravishankara, A.R.: Measurement of the rate coefficient for the reaction of O(1D) with H2O and re-evaluation of the atmospheric OH production rate. Phys. Chem. Chem. Phys. 6, 3333–3340 (2004)

    Article  Google Scholar 

  • Eigenmann, H.K., Golden, D.M., Benson, S.W.: Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J. Phys. Chem. 77(13), 1687–1691 (1973)

    Article  Google Scholar 

  • Evans, M.G., Polanyi, M.: Inertia and driving force of chemical reactions. T. Faraday Soc. 34, 11–29 (1938)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts, J.N., Jr.: Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic, San Diego, CA (1999)

    Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh, PA (1998)

  • Gery, M.W., Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetic mechanism for urban and regional scale computer modeling. J. Geophys. Res. 94(D10), 12925–12956 (1989)

    Article  Google Scholar 

  • Güsten, H., Klasinc, L., Marić, D.: Prediction of the abiotic degradability of organic compounds in the troposphere. J. Atmos. Chem. 2(1), 83–93 (1984)

    Article  Google Scholar 

  • Heicklen, J.: The decomposition of alkyl nitrites and the reactions of alkoxyl radicals. In: Advances in Photochemistry, vol. 14, pp. 177–272. Wiley (1988)

  • Horner, J.H., Choi, S.-Y., Newcomb, M.: Laser flash photolysis studies of alkoxyl radical kinetics using 4-nitrobenzenesulfenate esters as radical precursors. Org. Lett. 2(21), 3369–3372 (2000)

    Article  Google Scholar 

  • Horspool, W.M.: Aspects of Organic Photochemistry. Academic, New York (1976)

    Google Scholar 

  • Jeffries, H.E., Tonnesen, S.: A comparison of two photochemical reaction mechanisms using mass balance and process analysis. Atmos. Environ. 28(18), 2991–3003 (1994)

    Article  Google Scholar 

  • Jenkin, M.E., Saunders, S.M., Pilling, M.J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 31(1), 81–104 (1997)

    Article  Google Scholar 

  • Johnston, H.S., Davis, H.F., Lee, Y.T.: NO3 photolysis product channels: quantum yields from observed energy thresholds. J. Phys. Chem. 100(12), 4713–4723 (1996)

    Article  Google Scholar 

  • Kanno, N., Tonokura, K., Koshi, M.: Equilibrium constant of the HO2-H2O complex formation and kinetics of HO2 + HO2-H2O: implications for tropospheric chemistry. J. Geophys. Res. 111, D20312 (2006)

    Article  Google Scholar 

  • Khan, S.S., Broadbelt, L.J.: A group additivity approach for the prediction of wavelength-dependent absorption cross-sections. Atmos. Environ. 38(7), 1015–1022 (2004)

    Article  Google Scholar 

  • Khan, S.S., Yu, X., Wade, J.R., Malmgren, R.D., Broadbelt, L.J.: Thermochemistry of radicals and molecules relevant to atmospheric chemistry: determination of group additivity values using G3//B3LYP theory. J. Phys. Chem. A 113(17), 5176–5194 (2009)

    Article  Google Scholar 

  • Kirchner, F.: The chemical mechanism generation programme chemata–part 1: the programme and first applications. Atmos. Environ. 39, 1143–1159 (2005)

    Article  Google Scholar 

  • Kirchner, F., Stockwell, W.R.: Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals. J. Geophys. Res. 101(D15), 21007–21022 (1996)

    Article  Google Scholar 

  • Kwok, E.S., Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmos. Environ. 29(14), 1685–1695 (1995)

    Article  Google Scholar 

  • Lay, T.H., Bozzelli, J.W.: Enthalpies of formation and group additivity of alkyl peroxides and trioxides. J. Phys. Chem. A 101(49), 9505–9510 (1997)

    Article  Google Scholar 

  • Madronich, S., Calvert, J.G.: Permutation reactions of organic peroxy radicals in the troposphere. J. Geophys. Res. 95(D5), 5697–5715 (1990)

    Article  Google Scholar 

  • Makar, P.A., Polavarapu, S.M.: Analytic solutions for gas-phase chemical mechanism compression. Atmos. Environ. 31(7), 1025–1039 (1997)

    Article  Google Scholar 

  • Makar, P.A., Stockwell, W.R., Li, S.M.: Gas-phase chemical mechanism compression strategies: treatment of reactants. Atmos. Environ. 30(6), 831–842 (1996)

    Article  Google Scholar 

  • Marsi, I., Viskolcz, B., Seres, L.: Application of the group additivity method to alkyl radicals: an ab initio study. J. Phys. Chem. A 104(19), 4497–4504 (2000)

    Article  Google Scholar 

  • Molina, L.T., Molina, M.J.: Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 91, 14501–14508 (1986)

    Article  Google Scholar 

  • Neeb, P.: Structure-reactivity based estimation of the rate constants for hydroxyl radical reaction with hydrocarbons. J. Atmos. Chem. 35(3), 295–315 (2000)

    Article  Google Scholar 

  • Neurock, M., Klein, M.T.: Linear free energy relationships in kinetic analyses: applications of quantum chemistry. Polycycl. Aromat. Compd. 3(4), 231–246 (1993)

    Article  Google Scholar 

  • Orlando, J.J., Tyndall, G.S.: The atmospheric chemistry of alkoxy radicals. Chem. Rev. 103(12), 4657–4689 (2003)

    Article  Google Scholar 

  • Pfaendtner, J., Broadbelt, L.J.: Mechanistic modeling of lubricant degradation. Part 1: structure-reactivity relationships for free-radical oxidation. Ind. Eng. Chem. Res. 47(9), 2886–2896 (2008a)

    Article  Google Scholar 

  • Pfaendtner, J., Broadbelt, L.J.: Mechanistic modeling of lubricant degradation. Part 2: the autoxidation of decane and octane. Ind. Eng. Chem. Res. 47(9), 2897–2904 (2008b)

    Article  Google Scholar 

  • Ritter, E.R., Bozzelli, J.W.: THERM: thermodynamic property estimation for gas phase radicals and molecules. Int. J. Chem. Kinet. 23(9), 767–778 (1991)

    Article  Google Scholar 

  • Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development of the master chemical mechanism, mcm v3 (part a): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003a)

    Article  Google Scholar 

  • Saunders, S.M., Pascoe, S., Johnson, A.P., Pilling, M.J., Jenkin, M.E.: Development and preliminary test results of an expert system for the automatic generation of tropospheric VOC degradation mechanisms. Atmos. Environ. 37(13), 1723–1735 (2003b)

    Article  Google Scholar 

  • Seefeld, S., Stockwell, W.R.: First-order sensitivity analysis of models with time-dependent parameters: an application to PAN and ozone. Atmos. Environ. 33(18), 2941–2953 (1999)

    Article  Google Scholar 

  • Somnitz, H., Zellner, R.: Theoretical studies of unimolecular reactions of C2-C5 alkoxy radicals. Part II. RRKM dynamical calculations. Phys. Chem. Chem. Phys. 2(9), 1907–1918 (2000)

    Article  Google Scholar 

  • Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X.: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 95, 16343–16367 (1990)

    Article  Google Scholar 

  • Stockwell, W.R., Kirchner, F., Kuhn, M., Seefeld, S.: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 102, 25847–25880 (1997)

    Article  Google Scholar 

  • Swihart, M.T., Girshick, S.L.: Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. J. Phys. Chem. B 103(1), 64–76 (1999)

    Article  Google Scholar 

  • Talukdar, R.K., Longfellow, C.A., Gilles, M.K., Ravishankara, A.R.: Quantum yields of O(1D) in the photolysis of ozone between 289 and 329 nm as a function of temperature. Geophys. Res. Lett. 25(2), 143–146 (1998)

    Article  Google Scholar 

  • Tomas, A., Villenave, E., Lesclaux, R.: Reactions of the HO2 radical with CH3CHO and CH3C(O)O2 in the gas phase. J. Phys. Chem. A 105(14), 3505–3514 (2001)

    Article  Google Scholar 

  • Wong, H.-W., Li, X.G., Swihart, M.T., Broadbelt, L.J.: Detailed kinetic modeling of silicon nanoparticle formation chemistry via automated mechanism generation. J. Phys. Chem. A 108(46), 10122–10132 (2004a)

    Article  Google Scholar 

  • Wong, H.-W., Nieto, J.C.A., Swihart, M.T., Broadbelt, L.J.: Thermochemistry of silicon-hydrogen compounds generalized from quantum chemical calculations. J. Phys. Chem. A 108(5), 874–897 (2004b)

    Article  Google Scholar 

  • Zhu, L., Bozzelli, J.W.: Structures, rotational barriers, and thermochemical properties of chlorinated aldehydes and the corresponding acetyl (CĊ=O) and formyl methyl radical (ĊC=O) and additivity groups. J. Phys. Chem. A 106(2), 345–355 (2002)

    Google Scholar 

  • Zhu, L., Chen, C.-J., Bozzelli, J.W.: Structures, rotational barriers, and thermodynamic properties of C2 vinyl and chlorovinyl alcohols and additivity groups. J. Phys. Chem. A 104(40), 9197–9206 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by U.S. EPA—Science to Achieve Results (STAR) Program Grant #R-82816901-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Broadbelt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 4.63 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.S., Zhang, Q. & Broadbelt, L.J. Automated mechanism generation. Part 1: mechanism development and rate constant estimation for VOC chemistry in the atmosphere. J Atmos Chem 63, 125–156 (2009). https://doi.org/10.1007/s10874-010-9164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-010-9164-z

Keywords

Navigation