Journal of Atmospheric Chemistry

, Volume 63, Issue 3, pp 187–202 | Cite as

Chemical transformations of peptide containing fine particles: oxidative processing, accretion reactions and implications to the atmospheric fate of cell-derived materials in organic aerosol

  • Scott Geddes
  • James Zahardis
  • Giuseppe A. PetrucciEmail author


The atmospheric processing by ozone of peptide-containing mixed particles was investigated as proxies for biogenic and sea spray primary organic aerosol. Reactions were performed in a flow reactor and particle composition was monitored by photoelectron resonance capture ionization aerosol mass spectrometry. Mixed particles containing dipeptides in a saturated organic matrix of stearic and palmitic acids showed no reaction under ozonolysis at exposure levels of 2.5 × 10−4 atm s O3. However reactions of mixed particles of a dipeptide (Leu-Leu) in an unsaturated matrix (oleic acid) under the same conditions resulted in a rapid loss of the peptide ion signal, as well as the carrier matrix, and appearance of a number of ion signals corresponding to secondary products. High molecular weight imides and amides have been identified corresponding to possible reactions of ozonolysis products and reactive intermediates (i.e. aldehydes, stabilized Criegee intermediates). Additionally, tautomerisation of the imides to enamines in the particle phase is postulated, with ozonolysis of the enamine followed by regioselective decomposition of the primary ozonide to form an amide whereby the peptide incorporates an aldehydic group at the N-terminus. The same general reactivity pattern was observed for mixed particles of diglycine and oleic acid. This behavior was not observed in solution phase experiments, where the tautomerisation favors the more stable imine form, indicating that particulate phase reactions of this nature may be dependent on the specific particle physical properties. The implications of this chemistry with respect the atmospheric aging of cell-derived organic aerosol are discussed.


Ozonolysis Bioaerosol Proteinaceous particles Organic aerosol Soft ionization aerosol mass spectrometry PERCI 



Funding for this research was provided by the National Science Foundation (AGS ATM-0925052) and the UVM Transportation Research Center. The authors also gratefully acknowledge support from the National Science Foundation for purchase of the LC-MS (CHE MRI-0821501) as well as Dr. S. Flemer for synthesis of the dipeptides.


  1. Andreae, M.O., Crutzen, P.J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276, 1052–1058 (1997)CrossRefGoogle Scholar
  2. Angelino, S., Suess, D.T., Prather, K.A.: Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry. Environ. Sci. Technol. 35(15), 3130–3138 (2001)CrossRefGoogle Scholar
  3. Ariya, P.A., Sun, J., Eltouny, N.A., Hudson, E.D., Hayes, C.T., Kos, G.: Physical and chemical characterization of bioaerosols—implications for nucleation processes. Int. Rev. Phys. Chem. 28(1), 1–32 (2009)CrossRefGoogle Scholar
  4. Barsanti, K.C., Pankow, J.F.: Thermodynamics of the formation of atmospheric particulate matter by accretion reactions—part 1: aldehydes and ketones. Atmos. Environ. 38, 4371–4382 (2004)CrossRefGoogle Scholar
  5. Barsanti, K.C., McMurry, P.H., Smith, J.N.: The potential contribution of organic salts to new particle growth. Atmos. Chem. Phys. 9, 2949–2957 (2009)CrossRefGoogle Scholar
  6. Beddows, D.C.S., Donovan, R.J., Harrison, R.M., Heal, M.R., Kinnersley, R.P., King, M.D., Nicholson, D.H., Thompson, K.C.: Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry. J. Environ. Monit. 6, 124–133 (2004)CrossRefGoogle Scholar
  7. Belan, B.D., Borodulin, A.I., Buryak, G.A., Marchenko, Y.V., Olkin, S.E., Panchenko, M.V., P’yankov, O.V., Safatov, A.S.: Annual changes in concentration of protein content of atmospheric aerosol in the South of Western Siberia. J. Aerosol. Sci. 31(Supplement 1), S963–S964 (2000)CrossRefGoogle Scholar
  8. Bordes, R., Tropsch, J., Holmberg, K.: Role of an amide bond for self-assembly of surfactants. Langmuir. 26(5), 3077–3083 (2010)CrossRefGoogle Scholar
  9. Brunekreef, B.: NO2: the gas that won’t go away. Clin. Exp. Allergy 31(8), 1170–1172 (2001)CrossRefGoogle Scholar
  10. Brunekreef, B., Sunyer, J.: Asthma, rhinitis and air pollution: is traffic to blame? Eur. Respir. J. 21(6), 913–915 (2003)CrossRefGoogle Scholar
  11. Bunnelle, W.H.: Preparation, properties, and reactions of carbonyl oxides. Chem. Rev. 91(3), 335–362 (1991)CrossRefGoogle Scholar
  12. Bzdek, B.R., Ridge, D.P., Johnston, M.V.: Amine exchange into ammonium bisulfate and ammonium nitrate nuclei. Atmos. Chem. Phys. Discuss. 10, 45–68 (2010)CrossRefGoogle Scholar
  13. Chan, M.N., Choi, M.Y., Ng, N.L., Chan, C.K.: Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species. Environ. Sci. Technol. 39(6), 1555–1562 (2005)CrossRefGoogle Scholar
  14. Cheng, Y., Li, S.-H., Leithead, A., Brickell, P.C., Leaitch, W.R.: Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in the Lower Fraser Valley during Pacific 2001 Air Quality Study. Atmos. Environ. 38, 5789–5800 (2004)CrossRefGoogle Scholar
  15. Cornell, S., Mace, K., Coeppicus, S., Duce, R., Huebert, B., Jickells, T., Zhuang, L.-Z.: Organic nitrogen in Hawaiin rain and aerosol. J. Geophys. Res. 106(D8), 7973–7983 (2001)CrossRefGoogle Scholar
  16. Cornell, S.E., Jickells, T.D., Cape, J.N., Rowland, A.P., Duce, R.A.: Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos. Environ. 37(16), 2173–2191 (2003)CrossRefGoogle Scholar
  17. De Hann, D.O., Corrigan, A.L., Smith, K.W., Stroik, D.R., Turley, J.B., Lee, F.E., Tolbert, M.A., Jimenez, J.L., Cordova, K.E., Ferrell, G.R.: Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ. Sci. Technol. 43(8), 2818–2824 (2009)CrossRefGoogle Scholar
  18. Deguillaume, L., Leriche, M., Amato, P., Ariya, P.A., Delort, A.-M., Pöschl, U., Chaumerliac, N., Bauer, H., Flossmann, A.I., Morris, C.E.: Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 5, 1073–1084 (2008)CrossRefGoogle Scholar
  19. Doyle, H.A., Mamula, M.J.: Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 22(8), 443–449 (2001)CrossRefGoogle Scholar
  20. Drewnick, F., Schneider, J., Hings, S.S., Hock, N., Noone, K., Targino, A., Weimer, S., Borrmann, S.: Measurement of ambient, interstitial, and residual aerosol particles on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI. J. Atmos. Chem. 56(1), 1–20 (2007)CrossRefGoogle Scholar
  21. Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R.S., Geider, R.J., Jickells, T., Kuypers, M.M., Langlois, R., Liss, P.S., Liu, S.M., Middelburg, J.J., Moore, C.M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L.L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., Zamora, L.: Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320(5878), 893–897 (2008)CrossRefGoogle Scholar
  22. Facchini, M.C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S., Moretti, F., Tagliavini, E., Ceburnis, D., O’Dowd, C.D.: Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 42(24), 9116–9121 (2008)CrossRefGoogle Scholar
  23. Filipy, J., Rumburg, B., Mount, G., Westberg, H., Lamb, B.: Identification and quantification of volatile organic compounds from a dairy. Atmos. Environ. 40, 1480–1494 (2006)CrossRefGoogle Scholar
  24. Franze, T., Weller, M.G., Niessner, R., Pöschl, U.: Protein nitration by polluted air. Environ. Sci. Technol. 39(6), 1673–1678 (2005)CrossRefGoogle Scholar
  25. Fraser, M.P., Yue, Z.W., Tropp, R.J., Kohl, S.D., Chow, J.C.: Molecular composition of organic fine particulate matter in Houston, TX. Atmos. Environ. 36(38), 5751–5758 (2002)CrossRefGoogle Scholar
  26. Fuzzi, S., Andreae, M.O., Huebert, B.J., Kulmala, M., Bond, T.C., Boy, M., Doherty, S.J., Guenther, A., Kanakidou, M., Kerminen, V.-M., Lohmann, U., Russell, L.M., Pöschl, U.: Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 6, 2017–2038 (2006)CrossRefGoogle Scholar
  27. Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A.: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878), 889–892 (2008)CrossRefGoogle Scholar
  28. Geddes, S., Zahardis, J., Eisenhauer, J., Petrucci, G.A.: Low energy photoelectron resonance capture ionization aerosol mass spectrometry of small peptides with cysteine residues: Cys-Gly, γ-Glu-Cys, and glutathione (γ-Glu-Cys-Gly). Int. J. Mass Spectrom. 282(1–2), 13–20 (2009)CrossRefGoogle Scholar
  29. Graber, E.R., Rudich, Y.: Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 6, 729–753 (2006)CrossRefGoogle Scholar
  30. Hine, J., Via, F.A.: Kinetics of the formation of imines from isobutyraldehyde and primary aliphatic amines with polar substituents. J. Am. Chem. Soc. 94(1), 190–194 (1972)CrossRefGoogle Scholar
  31. Hine, J., Cholod, M.S., Chess Jr., W.K.: Kinetics of the formation of imines from acetone and primary amines. Evidence for internal acid-catalyzed dehydration of certain carbinolamines. J. Am. Chem. Soc. 95(13), 4270–4276 (1973)CrossRefGoogle Scholar
  32. Hock, N., Schneider, J., Borrmann, S., Römpp, A., Moortgat, G., Franze, T., Schauer, C., Pöschl, U., Plass-Dülmer, C., Berresheim, H.: Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002). Atmos. Chem. Phys. 8, 603–623 (2008)CrossRefGoogle Scholar
  33. Hrvačić, B., Bošnjak, B., Tudja, M., Mesić, M., Merćep, M.: Applicability of an ultrasonic nebulization system for the airways delivery of beclomethasone dipropionate in a murine model of asthma. Pharm. Res. 23(8), 1765–1775 (2006)CrossRefGoogle Scholar
  34. Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere. Science 308(5718), 73 (2005)CrossRefGoogle Scholar
  35. Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielson, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J.: Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053–1123 (2005)CrossRefGoogle Scholar
  36. Kotiaho, T., Eberlin, M.N., Vainiotalo, P., Kostiainen, R.: Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J. Am. Soc. Mass Spectrom. 11(6), 526–535 (2000)CrossRefGoogle Scholar
  37. Kurtén, T., Loukonen, V., Vehkamäki, H., Kulmala, M.: Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 8(14), 4095–4103 (2008)CrossRefGoogle Scholar
  38. Kuznetsova, M., Lee, C., Aller, J.: Characterization of the proteinaceous matter in marine aerosols. Mar. Chem. 96(3–4), 359–377 (2005)CrossRefGoogle Scholar
  39. LaFranchi, B.W., Petrucci, G.A.: A comprehensive characterization of photoelectron resonance capture ionization aerosol mass spectrometry for the quantitative and qualitative analysis of organic particulate matter. Int. J. Mass Spectrom. 258, 120–133 (2006)CrossRefGoogle Scholar
  40. LaFranchi, B.W., Zahardis, J., Petrucci, G.A.: Photoelectron resonance capture ionization mass spectrometry: a soft ionization source for mass spectrometry of particle-phase organic compounds. Rapid Commun. Mass Spectrom. 18(21), 2517–2521 (2004)CrossRefGoogle Scholar
  41. Laskin, A., Smith, J.S., Laskin, J.: Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ. Sci. Technol. 43(10), 3764–3771 (2009)CrossRefGoogle Scholar
  42. Lloyd, J.A., Spraggins, J.M., Johnston, M.V., Laskin, J.: Peptide ozonolysis: product structures and relative reactivities for oxidation of tyrosine and histidine residues. J. Am. Soc. Mass Spectrom. 17(9), 1289–1298 (2006)CrossRefGoogle Scholar
  43. Mace, K.A., Artaxo, P., Duce, R.A.: Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J. Geophys. Res. 108(D16), 4512 (2003a)CrossRefGoogle Scholar
  44. Mace, K.A., Duce, R.A., Tindale, N.W.: Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia. J. Geophys. Res. 108(11), 4338 (2003b)CrossRefGoogle Scholar
  45. Matsumoto, K., Uematsu, M.: Free amino acid in marine aerosol over the western North Pacific Ocean. Atmos. Environ. 39, 2163–2170 (2005)CrossRefGoogle Scholar
  46. McGregor, K.G., Anastasio, C.: Chemistry of fog waters in California’s Central Valley: 2. Photochemical transformations of amino acids and alkyl amines. Atmos. Environ. 35, 1091–1104 (2001)CrossRefGoogle Scholar
  47. Menetrez, M.Y., Foarde, K.K., Ensor, D.S.: An analytical method for the measurement of nonviable bioaerosols. J. Air Waste Manage. Assoc. 51(10), 1436–1442 (2001)CrossRefGoogle Scholar
  48. Meskhidze, N., Nenes, A.: Phytoplankton and cloudiness in the Southern Ocean. Science 314, 1419–1423 (2006)CrossRefGoogle Scholar
  49. Mikhailov, E., Vlasenko, S., Niessner, R., Pöschl, U.: Interaction of aerosol particles composed of protein and salts with water vapor: hygroscopic growth and microstructural rearrangement. Atmos. Chem. Phys. 4, 323–350 (2004)CrossRefGoogle Scholar
  50. Mochida, M., Kitamori, Y., Kawamura, K., Nojiri, Y., Suzuki, K.: Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea-salt particles. J. Geophys. Res. 107(D17), 4325 (2002)CrossRefGoogle Scholar
  51. Möhler, O., DeMott, P.J., Vali, G., Levin, Z.: Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4, 1059–1071 (2007)CrossRefGoogle Scholar
  52. Mopper, K., Zika, R.G.: Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling. Nature 325, 246–249 (1987)CrossRefGoogle Scholar
  53. Murphy, S.M., Sorooshian, A., Kroll, J.H., Ng, N.L., Chhabra, P., Tong, C., Surratt, J.D., Knipping, E., Flagan, R.C., Seinfeld, J.H.: Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 7, 2313–2337 (2007)CrossRefGoogle Scholar
  54. Nakamura, T., Ogawa, H., Maripi, D.K., Uematsu, M.: Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific. Atmos. Environ. 40, 7259–7264 (2006)CrossRefGoogle Scholar
  55. Ngwabie, N.M., Schade, G.W., Custer, T.G., Linke, S., Hinz, T.: Volatile organic compound emission and other trace gases from selected animal buildings. Landbauforsch Völkenrode 57(3), 273–284 (2007)Google Scholar
  56. Nozière, B., Córdova, A.: A kinetic and mechanistic study of the amino acid catalyzed aldol condensation of acetaldehyde in aqueous and salt solutions. J. Phys. Chem. A 112(13), 2827–2837 (2008)CrossRefGoogle Scholar
  57. Nozière, B., Dziedzic, P., Córdova, A.: Formation of secondary light-absorbing “fulvic-like” oligomers: a common process in aqueous and ionic atmospheric particles? Geophys. Res. Lett. 34, L21812 (2007)CrossRefGoogle Scholar
  58. O’Dowd, C.D., Facchini, M.C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y.J., Putaud, J.-P.: Biogenically driven organic contribution to marine aerosol. Nature 431(7), 676–680 (2004)CrossRefGoogle Scholar
  59. Petrucci, G.A., Farnswoth, P.B., Cavalli, P., Omenetto, N.: A differentially pumped particle inlet for sampling of atmospheric aerosols into a time-of-flight mass spectrometer: optical characterization of the particle beam. Aerosol Sci. Tech. 33, 105–121 (2000)CrossRefGoogle Scholar
  60. Pio, C., Alves, C., Duarte, A.: Organic components of aerosols in a forested area of central Greece. Atmos. Environ. 35, 389–401 (2001)CrossRefGoogle Scholar
  61. Pope III, C.A., Ezzati, M., Dockery, D.W.: Fine-particulate air pollution and life expectancy in the United States. New Engl. J. Med. 360(4), 376–386 (2009)CrossRefGoogle Scholar
  62. Pöschl, U.: Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44, 7520–7540 (2005)CrossRefGoogle Scholar
  63. Pratt, K.A., Hatch, L.E., Prather, K.A.: Seasonal volatility dependence of ambient particle phase amines. Environ. Sci. Technol. 43(14), 5276–5281 (2009)CrossRefGoogle Scholar
  64. Robinson, A.L., Subramanian, R., Donahue, N.M., Bernardo-Bricker, A., Rogge, W.F.: Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environ. Sci. Technol. 40(24), 7820–7827 (2006)CrossRefGoogle Scholar
  65. Rudich, Y., Donahue, N.M., Mentel, T.F.: Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 58(1), 321–352 (2007)CrossRefGoogle Scholar
  66. Schade, G.W., Crutzen, P.J.: Emission of aliphatic amines from animal husbandry and their reactions: potential source of N2O and HCN. J. Atmos. Chem. 22, 319–346 (1995)CrossRefGoogle Scholar
  67. Shilling, J.E., King, S.M., Mochida, M., Worsnop, D.R., Martin, S.T.: Mass spectral evidence that small changes in composition caused by oxidative aging processes alter aerosol CCN properties. J. Phys. Chem. A 111(17), 3358–3368 (2007)CrossRefGoogle Scholar
  68. Silva, P.J., Erupe, M.E., Price, D., Elias, J., Malloy, Q.G.J., Li, Q., Warren, B., Cocker III, D.R.: Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphere. Environ. Sci. Technol. 42(13), 4689–4696 (2008)CrossRefGoogle Scholar
  69. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.): Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York City, NY, USA (2007)Google Scholar
  70. Sorooshian, A., Murphy, S.M., Hersey, S., Gates, H., Padro, L.T., Nenes, A., Brechtel, F.J., Jonsson, H., Flagan, R.C., Seinfeld, J.H.: Comprehensive airborne characterization of aerosol from a major bovine source. Atmos. Chem. Phys. 8, 5489–5520 (2008)CrossRefGoogle Scholar
  71. Spitzy, A.: Amino acids in marine aerosols and rain. In: Ittekot, V., Kempe, S. (eds.) Facets of Modern Biogeochemistry. Springer-Verlag, Berlin (1990)Google Scholar
  72. Stjerndah, M., Lundberg, D., Zhang, H., Menger, F.M.: NMR studies of aggregation and hydration of surfactants containing amide bonds. J. Phys. Chem. B 111(8), 2008–2014 (2007)CrossRefGoogle Scholar
  73. Subbalakshmi, Y., Patti, A.F., Lee, G.S.H., Hooper, M.A.: Structural characterisation of macromolecular organic material in air particulate matter using Py-GC-MS and solid state 13C-NMR. J. Environ. Monit. 2(6), 561–565 (2000)CrossRefGoogle Scholar
  74. Sun, J., Ariya, P.A.: Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos. Environ. 40(5), 795–820 (2006)CrossRefGoogle Scholar
  75. Tan, P.V., Evans, G.J., Tsai, J., Owega, S., Fila, M.S., Malpica, O., Brook, J.R.: On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations. Environ. Sci. Technol. 36(16), 3512–3518 (2002)CrossRefGoogle Scholar
  76. Tervahattu, H., Juhanoja, J.: Identification of an organic coating on marine aerosol particles by TOF-MS. J. Geophys. Res. 107(D16), 4319 (2002)CrossRefGoogle Scholar
  77. Yang, H., Xu, J., Wu, W.-S., Wan, C.H., Yu, J.Z.: Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia. Environ. Chem. 1(1), 13–17 (2004)CrossRefGoogle Scholar
  78. Yang, H., Yu, J.Z., Ho, S.S.H., Xu, J., Wu, W.-S., Wan, C.H., Wang, X., Wang, X., Wang, L.: The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmos. Environ. 39(20), 3735–3749 (2005)CrossRefGoogle Scholar
  79. Yang, H., Zhang, Y., Pöschl, U.: Quantification of nitrotyrosine in nitrated proteins. Anal. Bioanal. Chem. 397(2), 879–886 (2010)CrossRefGoogle Scholar
  80. Yoon, Y.J., Ceburnis, D., Cavalli, F., Jourdan, O., Putaud, J.P., Decesari, S., Fuzzi, S., Sellegri, K., Jennings, S.G., O’Dowd, C.D.: Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J. Geophys. Res. 112, D04206 (2007)Google Scholar
  81. Zahardis, J., Petrucci, G.A.: The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system—a review. Atmos. Chem. Phys. 7(5), 1237–1274 (2007)CrossRefGoogle Scholar
  82. Zahardis, J., LaFranchi, B.W., Petrucci, G.A.: Photoelectron resonance capture ionization-aerosol mass spectrometry of the ozonolysis products of oleic acid particles: direct measure of higher molecular weight oxygenates. J. Geophys. Res. 110, D08307 (2005)Google Scholar
  83. Zahardis, J., LaFranchi, B.W., Petrucci, G.A.: Direct observation of polymerization in the oleic acid—ozone heterogeneous reaction system by photoelectron resonance capture ionization aerosol mass spectrometry. Atmos. Environ. 40(9), 1661–1670 (2006)CrossRefGoogle Scholar
  84. Zahardis, J., Geddes, S., Petrucci, G.A.: Detection of free amino acids in proxies of marine aerosol by photoelectron resonance capture ionization aerosol mass spectrometry. Int. J. Environ. Anal. Chem. 88(3), 177–184 (2008a)CrossRefGoogle Scholar
  85. Zahardis, J., Geddes, S., Petrucci, G.A.: The ozonolysis of primary aliphatic amines in fine particles. Atmos. Chem. Phys. 8, 1181–1194 (2008b)CrossRefGoogle Scholar
  86. Zhang, Q., Anastasio, C.: Chemistry of fog waters in California’s Central Valley—part 3: concentrations and speciation of organic and inorganic nitrogen. Atmos. Environ. 35, 5629–5643 (2001)CrossRefGoogle Scholar
  87. Zhang, Q., Anastasio, C.: Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. Atmos. Environ. 37, 2247–2258 (2003)CrossRefGoogle Scholar
  88. Zheng, M., Cass, G.R., Schauer, J.J., Edgerton, E.S.: Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ. Sci. Technol. 36(11), 2361–2371 (2002)CrossRefGoogle Scholar
  89. Zordan, C.A., Wang, S., Johnston, M.V.: Time-resolved chemical composition of individual nanoparticles in urban air. Environ. Sci. Technol. 42(17), 6631–6636 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Scott Geddes
    • 1
  • James Zahardis
    • 1
  • Giuseppe A. Petrucci
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of VermontBurlingtonUSA

Personalised recommendations