Journal of Atmospheric Chemistry

, Volume 60, Issue 3, pp 253–271 | Cite as

Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France)

  • Guillaume BertrandEmail author
  • Hélène Celle-Jeanton
  • Paolo Laj
  • Jérôme Rangognio
  • Gilles Chazot


The present study investigates the chemical composition of wet atmospheric precipitation samples on a daily and an intra-event timescales in Opme, an experimental meteorological station located near Clermont-Ferrand, France. The samples have been collected from November 2005 to October 2007. A total of 217 rainwater samples, integrated for 24 h, were collected and analyzed for pH, conductivity, Na+, K+, Mg2+, NH 4 + , Ca2+, Cl, NO 3 , SO 4 2− , PO 4 3− and HCO 3 . The composition of the rainwater collected appeared to be controlled by the following potential sources: neutralisation process (association among calcium, ammonium with nitrate and sulphate), marine and terrestrial sources. In order to determine the role of long-range transport, the integrated events were classified according to four origins of air-masses: (1) West, (2) North and East, (3) South including Iberian and Italian Peninsulae and (4) local. This analysis allows identifying the source areas of the different association of elements defined. Although calcium is always dominant, total content of rainfall is variable and neutralisation process can be more or less efficient and specific. Rainout (long-range transport) and washout (below-cloud scavenging) were investigated through intra-event measurements of chemical species. Four rain-events have been selected according to the four classes of origins of air-masses. It appears that the first fractions are responsible for an important part of the chemical content of the whole event. Terrestrial species, locally emitted, induce the neutralisation process of acid species. Local meteorological conditions, such as wind’s speed and direction, play an important role as they could provoke recharges of the below cloud air column during the event.


Rainwater Major ions Sequential sampling Air-mass back-trajectories Chemistry France. 



The authors thank the PREVOIR project financed by the Auvergne region for its material support and gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website ( used in this publication.


  1. Al-Momani, I.F., Ataman, O.Y., Anwar, M.A., Tuncel, S., Kös, C., Tuncel, G.: Chemical composition of precipitation near an industrial area at Izmir, Turkey. Atmos. Environ 29, 1131–1143 (1995). doi: 10.1016/1352-2310(95)00027-V CrossRefGoogle Scholar
  2. Avila, A., Queralt-Mitjans, I., Alarcon, M.: Mineralogical composition of African dust delivered by red rains over northeastern Spain. J. Geophys. Res. 102(D18), 21, 977–996 (1997). doi: 10.1029/97JD00485 Google Scholar
  3. Avila, A., Alarcon, M., Queralt-Mitjans, I.: The chemical composition of dust transported in red rains and its contribution to the biogeochemical cycle of a holm oak forest in Catalonia (Spain). Atmos. Environ. 32, 179–191 (1998). doi: 10.1016/S1352-2310(97)00286-0 CrossRefGoogle Scholar
  4. Avila, A., Alarcon, M.: Relationship between precipitation chemistry and meteorological situations at a rural site in N.E. Spain. Atmos. Environ. 33, 1663–1677 (1999). doi: 10.1016/S1352-2310(98)00341-0 CrossRefGoogle Scholar
  5. Berner, E., Berner, R.: The global water cycle. Prentice Hall, New Jersey (1987)Google Scholar
  6. Beverland, I.J., Crowther, J.M., Srinivas, M.S.N., Heal, M.R.: The influence of meteorology and atmospheric transport patterns on the chemical composition of rainfall in south-east England. Atmos. Environ. 32, 1039–1048 (1998). doi: 10.1016/S1352-2310(97)00365-8 CrossRefGoogle Scholar
  7. Beysens, D., Ohayon, C., Muselli, M., Clus, O.: Chemical and biological characteristics of dew and rain water in an urban coastal area (Bordeaux, France). Atmos. Environ. 40, 3710–3723 (2006). doi: 10.1016/j.atmosenv.2006.03.007 CrossRefGoogle Scholar
  8. Bourrié, G.: Acquisition de la composition chimique des eaux en climat tempéré. Application aux granites des Vosges et de la Margeride. PhD Thesis, Université Louis Pasteur, Strasbourg (1978)Google Scholar
  9. Brewer, P.G.: Chemical Oceanography Vol.1. Academic Press, New-York (1975)Google Scholar
  10. Celle, H.: Caractérisation des précipitations sur le pourtour de la Méditerranée occidentale. Approche isotopique et chimique. PhD Thesis, Université Avignon et Pays de Vaucluse (2000)Google Scholar
  11. Celle-Jeanton, H., Gonfiantini, R., Travi, Y., Sol, B.: Oxygen-18 variations of rainwater during precipitation: application of the Rayleigh model to selected rainfalls in Southern France. J. Hydrol. (Amst.) 289, 165–177 (2004). doi: 10.1016/j.jhydrol.2003.11.017 CrossRefGoogle Scholar
  12. Celle-Jeanton, H., Travi, Y., Loye-Pilot, M.D., Huneau, F., Bertrand, G.: Rainwater chemistry at a Mediterranean inland station (Avignon, France): local contribution versus long range supply. Atmos. Res. 91, 118–126 (2009). doi: 10.1016/j.atmosres.2008.06.003 CrossRefGoogle Scholar
  13. Chate, D.M., Kamra, A.K.: Collection efficiencies of large water drops collecting aerosol particles of various densities. Atmos. Environ. 31, 1631–1635 (1997). doi: 10.1016/S1352-2310(96)00338-X CrossRefGoogle Scholar
  14. Chate, D.M., Rao, P.S.P., Naik, M.S., Momin, G.A., Safai, P.D., Ali, K.: Scavenging of aerosols and their chemical species by rain. Atmos. Environ. 37, 2477–2484 (2003). doi: 10.1016/S1352-2310(03)00162-6 CrossRefGoogle Scholar
  15. Cyrys, J., Gutschmidt, K., Brauer, M., Dumyahn, T., Heinrich, J., Spengler, J.D., Wichmann, H.E.: Determination of acidic sulfate aerosols in urban atmospheres in Erfurt (F.R.G.) and Sokolov (Former C.S.S.R). Atmos. Environ. 29, 3545–3557 (1995). doi: 10.1016/1352-2310(95)00133-J CrossRefGoogle Scholar
  16. Diaz-Caneja, N., Bonet, A., Gutierrez, I., Martinez, A., Villar, E.: The chemical composition of rainfall in a city of northern Spain. Water Air Soil Pollut. 43, 277–291 (1989)Google Scholar
  17. Durana, N., Casado, H., Ezcurra, A., Garcia, C., Lacaux, J.P.: Pham Van Dinh: experimental study of the scavenging process by means of a sequential precipitation collector, preliminary results. Atmos. Environ. 26A(13), 2437–2443 (1992)Google Scholar
  18. Draxler, R.R., Rolph, G.D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website ( ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD (2003)
  19. Ezcurra, A., Casado, H., Lacaux, J.P., Garcia, C.: Relationship between meteorological situations and acid rain in Spanish Basque country. Atmos. Environ. 22, 2779–2786 (1988). doi: 10.1016/0004-6981(88)90445-3 CrossRefGoogle Scholar
  20. Fowler, D., Smith, R.I., Muller, J.B.A., Hayman, G., Vincent, K.J.: Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environ. Pollut. 137, 15–25 (2005). doi: 10.1016/j.envpol.2004.12.028 CrossRefGoogle Scholar
  21. Finlayson-Pitts, B.J., Pitts, J.N.: Atmospheric chemistry-fundamentals and experimental techniques. Wiley, New-York (1986)Google Scholar
  22. Germer, S., Neill, C., Krusche, A.V., Gouveia Neto, S.C., Elsenbeer, H.: Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondonia, Brazil. Biogeochemistry 86, 155–174 (2007). doi: 10.1007/s10533-007-9152-9 CrossRefGoogle Scholar
  23. Gonçalves, F.L.T., Ramos, A.M., Freitas, S., Silva Dias, M.A., Massambani, O.: In-cloud and below-cloud numerical simulation of scavenging processes at Serra do Mar Region, SE Brazil. Atmos. Environ. 36, 5245–5255 (2002). doi: 10.1016/S1352–2310(02) 00461–2 CrossRefGoogle Scholar
  24. Hicks, B.B., Shannon, J.D.: A method for modelling the deposition of sulphur by precipitation over regional scales. J. Appl. Meteorol. 18, 1415–1420 (1979). doi: 10.1175/1520-0450(1979)018<1415:AMFMTD>2.0.CO;2 CrossRefGoogle Scholar
  25. Hov, O., Hjollo, B.A.: Transport distance of ammonia and ammonium in northern Europe. Its relation to emissions of SO2, and NOx. J. Geophys. Res. 99, 749–755 (1994)Google Scholar
  26. Huang, K., Zhuang, G., Xu, C., Wang, Y., Tang, A.: The chemistry of the severe acidic precipitation in Shanghai, China. Atmos. Res. 89, 149–160 (2008). doi: 10.1016/j.atmosres.2008.01.006 CrossRefGoogle Scholar
  27. INSEE: Recensement de mars 1999 de l’Institut National de la Statistique et des Etudes Economiques. (1999). Accessed 20 June 2007
  28. Jaffrezo, J.L., Colas, N., Bouchet, M.: Carboxylic acids measurements with ionic chromatography. Atmos. Environ. 32(14-15), 2705–2708 (1998). doi: 10.1016/S1352-2310(98)00026-0 CrossRefGoogle Scholar
  29. Junge, C.E.: Air chemistry and radioactivity. Academic, New-York (1963)Google Scholar
  30. Khwaja, H.A., Husain, L.: Chemical characterization of acid precipitation in Albany. New York. Atmos. Environ. 24A, 1869–1882 (1990)Google Scholar
  31. Lim, B., Jickells, T.D., Davies, T.D.: Sequential sampling of particles, major ions and total trace metals in wet deposition. Atmos. Environ. 25A(3–4), 745–762 (1991)Google Scholar
  32. Meszaros, E.: Atmospheric chemistry. Fundamental aspects. Studies in Environmental Science 11. (1981)Google Scholar
  33. Negrel, P., Roy, S.: Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Appl. Geochem. 13(8), 941–952 (1998). doi: 10.1016/S0883-2927(98)00029-8 CrossRefGoogle Scholar
  34. Pelicho, A.F., Martins, L.D., Nomi, S.N., Solci, M.C.: Integrated and sequential bulk and wet-only samplings of atmospheric precipitation in Londrina, South Brazil (1998–2002). Atmos. Environ. 40, 6827–6835 (2006). doi: 10.1016/j.atmosenv.2006.05.075 CrossRefGoogle Scholar
  35. Plaisance, H., Coddeville, P., Guillermo, R., Roussel, I.: Spatial variability and source identification of rural precipitation chemistry in France. Sci. Total Environ. 180, 257–270 (1996). doi: 10.1016/0048-9697(95)04943-6 CrossRefGoogle Scholar
  36. Plaisance, H., Galloo, J.C., Guillermo, R.: Source identification and variation in the chemical composition of precipitation at two rural sites in France. Sci. Total Environ. 206, 79–93 (1997). doi: 10.1016/S0048-9697(97)00221-0 CrossRefGoogle Scholar
  37. Rahn, K.A., Brosset, C., Ottar, B., Patterson, E.M.: Black and White episodes, chemical evolution of Eurasian air masses and long range transport of carbon into the Arctic. In: Wolff, T., Klimmish, R.L. (eds.) Particulate carbon: atmospheric life cycle, pp. 339–340. Plenum, New York (1982)Google Scholar
  38. Rangognio, J.: Apport des mesures chimiques infra-événementielles dans la compréhension des mécanismes d’acquisition de la chimie des précipitations. Master Research Report, Université Clermont-Ferrand (2006)Google Scholar
  39. Reade, L., Jennings, S.G., McSweeney, G.: Cloud condensation nuclei measurements at Mace Head, Ireland, over the period 1994–2002. Atmos. Res. 82, 610–621 (2006). doi: 10.1016/j.atmosres.2006.02.017 CrossRefGoogle Scholar
  40. Ricard, V., Jaffrezo, J.L., Kerminen, V.M., Hillamo, R.E., Sillanpaa, M., Ruellan, R., Liousse, C., Cachier, H.: Two years of continuous aerosol measurements in northern Finland. J. Geophys. Res. 107(D11), (2002)Google Scholar
  41. Rolph, G.D.: Real-time Environmental Applications and Display sYstem (READY) Website ( NOAA Air Resources Laboratory, Silver Spring, MD (2003)
  42. Saha, A., Moorthy, K.K.: Impact of precipitation on aerosol spectral optical depth and retrieved size distributions: a case study. J. Appl. Meteorol. 43, 902–914 (2004). doi: 10.1175/1520-0450(2004)043<0902:IOPOAS>2.0.CO;2 CrossRefGoogle Scholar
  43. Sanusi, A., Wortham, H., Millet, M., Mirabel, P.: Chemical composition of rainwater in eastern France. Atmos. Environ. 30(1), 59–71 (1996). doi: 10.1016/1352-2310(95)00237-S CrossRefGoogle Scholar
  44. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York (1998)Google Scholar
  45. Seymour, M.D., Stout, T.: Observations of the chemical composition of rain using a short sampling times during a single event. Atmos. Environ. 17(8), 1483–1487 (1983). doi: 10.1016/0004-6981(83)90301-3 CrossRefGoogle Scholar
  46. Simeonov, V., Kalina, M., Tsakovski, S., Puxbaum, H.: Multivariate statistical study of simultaneously monitored cloud water, aerosol and rainwater data from different elevation levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta 61, 519–528 (2003). doi: 10.1016/S0039-9140(03)00311-4 CrossRefGoogle Scholar
  47. Sisterson, D.L.: A method for evaluation of acidic sulphate and nitrate in precipitation. Water Air Soil Pollut. 43, 61–72 (1989). doi: 10.1007/BF00175583 CrossRefGoogle Scholar
  48. Tost, H., Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Lelieveld, J.: Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1. Atmos. Chem. Phys. 7, 2733–2757 (2007)CrossRefGoogle Scholar
  49. Zunckel, M., Saizar, C., Zarauz, J.: Rainwater composition in northeast Uruguay. Atmos. Environ. 37, 1601–1611 (2003). doi: 10.1016/S1352-2310(03)00007-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Guillaume Bertrand
    • 1
    Email author
  • Hélène Celle-Jeanton
    • 1
  • Paolo Laj
    • 2
  • Jérôme Rangognio
    • 3
  • Gilles Chazot
    • 4
  1. 1.Université Clermont-FerrandLaboratoire Magmas et Volcans-CNRS UMR 6524Cedex, Clermont-FerrandFrance
  2. 2.Université Clermont-FerrandLaboratoire de Météorologie Physique-CNRS UMR 6016, IIAubièreFrance
  3. 3.Centre National de Recherche MétéorologiqueToulouseFrance
  4. 4.Université de Brest, CNRS, UMR 6538 Domaines OcéaniquesInstitut Universitaire Européen de la MerPlouzanéFrance

Personalised recommendations