Advertisement

Journal of Atmospheric Chemistry

, Volume 60, Issue 2, pp 169–187 | Cite as

Air pollutant emission rates and concentrations in medieval churches

  • G. LoupaEmail author
  • S. Rapsomanikis
Original Paper

Abstract

A series of indoor air quality parameters were determined in two medieval churches, in Cyprus (temperature, relative humidity, total and UV solar radiation, CO2 indoors and O3, NO, NO2 *, HNO3 *, HCl, HCOOH, CH3COOH indoors and outdoors). These data were used as input in a validated indoor air quality model to predict indoor air pollutant source strengths and species concentrations that resulted from dark or photochemical reactions. The NO and NO2 emission rates due to the burning of incense or candles were estimated. Model results revealed that heterogeneous NO formation takes place simultaneously with the heterogeneous HONO formation. Also, model application has shown that indoor NOx emissions resulted in decreased free radical concentrations, in contrast to the organic compound emissions, which increased free radical concentrations. This effect of indoor emissions on indoor radicals can partly explain the indoor enhancement/depression of indoor gaseous acid formation.

Keywords

Indoor model-indoor chemistry Incense emissions Candle emissions Radical concentrations 

Notes

Acknowledgments

The authors would like to thank Dr. I. Kioutsioukis for his help in modelling ambient air pollutant concentrations.

References

  1. Acker, K., Möller, D., Auel, R., Wieprecht, W., Kalaί, D.: Concentrations of nitrous acid, nitric acid, nitrite and nitrate in the gas and aerosol phase at a site in the emission zone during ESCOMPTE 2001 experiment. Atmos. Res. 74, 507–524 (2005). doi: 10.1016/j.atmosres.2004.04.009 CrossRefGoogle Scholar
  2. Ammann, M., Kalberer, M., Jost, D.T., Tobler, L., Rössler, E., Piguet, D., Gäggeler, H.W., Baltensperger, U.: Heterogeneous production of nitrous acid on soot in polluted air masses. Nature 395, 157–160 (1998). doi: 10.1038/25965 CrossRefGoogle Scholar
  3. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Haynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—Gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738 (2004)Google Scholar
  4. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II–; gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055 (2006)Google Scholar
  5. Bartlett, K.H., Martinez, M., Bert, J.: Modeling of occupant-generated CO2 dynamics in naturally ventilated classrooms. J. Occup. Environ. Hyg. 1, 139 (2004)Google Scholar
  6. Bellia, L., Cesarano, A., Minichiello, F., Sibilio, S.: De-Light: a software tool for the evaluation of direct daylighting illuminances both indoors and outdoors—Comparison with Superlite 2.0 and Lumen Micro 7.1. Build. Environ. 35, 281–295 (2000). doi: 10.1016/S0360-1323(99)00026-8 CrossRefGoogle Scholar
  7. Brauer, M., Barry Ryan, P., Suh, H.H., Koutrakis, P., Spengler, J.D., Leslie, N.P., Billick, I.H.: Measurements of nitrous acid inside two research houses. Environ. Sci. Technol. 24, 1521 (1990). doi: 10.1021/es00080a011 CrossRefGoogle Scholar
  8. Carslaw, N.: A new detailed chemical model for indoor air pollution. Atmos. Environ. 41, 1164–1179 (2007). doi: 10.1016/j.atmosenv.2006.09.038 CrossRefGoogle Scholar
  9. Carter, W.P.L., Cocker Iii, D.R., Fitz, D.R., Malkina, I.L., Bumiller, K., Sauer, C.G., Pisano, J.T., Bufalino, C., Song, C.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 39, 7768–7788 (2005). doi: 10.1016/j.atmosenv.2005.08.040 CrossRefGoogle Scholar
  10. Chang, S., Allen, D.T.: Chlorine chemistry in urban atmospheres: aerosol formation associated with anthropogenic chlorine emissions in Southeast Texas. Atmos. Environ. 40, 512 (2006). doi: 10.1016/j.atmosenv.2006.04.070 CrossRefGoogle Scholar
  11. Croxford, B., Kynigou, D.: Carbon monoxide emissions from joss or incense sticks. Indoor Built Environ. 14, 277 (2005). doi: 10.1177/1420326X05054016 CrossRefGoogle Scholar
  12. De Santis, F., Allegrini, I., Fazio, M.C., Pasella, D.: Characterization of indoor air quality in the Church of San luigi Dei Francesi, Rome, Italy. Int. J. Environ. Anal. Chem. 64, 71–81 (1996). doi: 10.1080/03067319608028336 CrossRefGoogle Scholar
  13. Destaillats, H., Lunden, M.M., Singer, B.C., Coleman, B.K., Hodgson, A.T., Weschler, C.J., Nazaroff, W.W.: Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study. Environ. Sci. Technol. 40, 4421 (2006). doi: 10.1021/es052198z CrossRefGoogle Scholar
  14. Dimitroulopoulou, C., Ashmore, M.R., Hill, M.T.R., Byrne, M.A., Kinnersley, R.: INDAIR: a probabilistic model of indoor air pollution in UK homes. Atmos. Environ. 40, 6362 (2006). doi: 10.1016/j.atmosenv.2006.05.047 CrossRefGoogle Scholar
  15. Drakou, G., Zerefos, C., Ziomas, I.: A sensitivity study of parameters in the Nazaroff-Cass IAQ model with respect to indoor concentrations of O3, NO, NO2. Environ. Technol. 21, 483–503 (2000). doi: 10.1080/09593332108618095 CrossRefGoogle Scholar
  16. Drakou, G., Zerefos, C., Ziomas, I., Voyatzaki, M.: Measurements and numerical simulations of indoor O3 and NO(x) in two different cases. Atmos. Environ. 32, 595–610 (1998). doi: 10.1016/S1352-2310(97)00335-X CrossRefGoogle Scholar
  17. Ezell, M.J., Wang, W., Ezell, A.A., Soskin, G., Finlayson-Pitts, B.J.: Kinetics of reactions of chlorine atoms with a series of alkenes at 1 atm and 298 K: Structure and reactivity. Phys. Chem. Chem. Phys. 4, 5813 (2002). doi: 10.1039/b207529f CrossRefGoogle Scholar
  18. Febo, A., Perrino, C.: Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments. Atmos. Environ. A Gen 25 A, 1055(1991)Google Scholar
  19. Febo, A., Perrino, C.: Measurement of high concentration of nitrous acid inside automobiles. Atmos. Environ. 29, 345 (1995). doi: 10.1016/1352-2310(94)00260-R CrossRefGoogle Scholar
  20. Fenske, J.D.: Human breath emissions of VOCs. J. Air Waste Manage. Assoc. 49, 594 (1999)Google Scholar
  21. Fine, P.M., Cass, G.R., Simoneit, B.R.T.: Characterization of fine particle emissions from burning church candles. Environ. Sci. Technol. 33, 2352 (1999). doi: 10.1021/es981039v CrossRefGoogle Scholar
  22. Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A.: The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism. Phys. Chem. Chem. Phys. 5, 223 (2003). doi: 10.1039/b208564j CrossRefGoogle Scholar
  23. Godoi, R.H.M., Kontozova, V., Van Grieken, R.: The shielding effect of the protective glazing of historical stained glass windows from an atmospheric chemistry perspective: case study Sainte Chapelle, Paris. Atmos. Environ. 40(7), 1255 (2006). doi: 10.1016/j.atmosenv.2005.10.033 CrossRefGoogle Scholar
  24. Grøntoft, T., Raychaudhuri, M.R.: Compilation of tables of surface deposition velocities for O3, NO2 and SO2 to a range of indoor surfaces. Atmos. Environ. 38(4), 533–544 (2004). doi: 10.1016/j.atmosenv.2003.10.010 CrossRefGoogle Scholar
  25. Guo, Z., Jetter, J.J., McBrian, J.A.: Rates of polycyclic aromatic hydrocarbon emissions from incense. Bull. Environ. Contam. Toxicol. 72, 186 (2004). doi: 10.1007/s00128-003-0258-z CrossRefGoogle Scholar
  26. Hisham, M.W.M., Grosjean, D.: Air pollution in Southern California museums: indoor and outdoor levels of nitrogen dioxide, peroxyacetyl nitrate, nitric acid, and chlorinated hydrocarbons. Environ. Sci. Technol. 25, 857 (1991). doi: 10.1021/es00017a004 CrossRefGoogle Scholar
  27. Ho, S.S.H., Yu, J.Z.: Concentrations of formaldehyde and other carbonyls in environments affected by incense burning. J. Environ. Monit. 4, 728 (2002). doi: 10.1039/b200998f CrossRefGoogle Scholar
  28. Hodgson, A.T., Faulkner, D., Sullivan, D.P., DiBartolomeo, D.L., Russell, M.L., Fisk, W.J.: Effect of outside air ventilation rate on volatile organic compound concentrations in a call center. Atmos. Environ. 37, 5517–5527 (2003). doi: 10.1016/j.atmosenv.2003.09.028 CrossRefGoogle Scholar
  29. Huynh, C.K., Savolainen, H., Vu-Duc, T., Guillemin, M., Iselin, F.: Impact of thermal proofing of a church on its indoor air quality: the combustion of candles and incense as a source of pollution. Sci. Total Environ. 102, 241 (1991). doi: 10.1016/0048-9697(91)90318-9 CrossRefGoogle Scholar
  30. Ingrosso, G.: Free radical chemistry and its concern with indoor air quality: an open problem. Microchem. J. 73, 221–236 (2002). doi: 10.1016/S0026-265X(02)00067-X CrossRefGoogle Scholar
  31. Jakobi, G., Fabian, P.: Indoor/outdoor concentrations of ozone and peroxyacetyl nitrate (PAN). Int. J. Biometeorol. 40, 162 (1997). doi: 10.1007/s004840050037 CrossRefGoogle Scholar
  32. Jetter, J.J., Guo, Z., McBrian, J.A., Flynn, M.R.: Characterization of emissions from burning incense. Sci. Total Environ. 295, 51 (2002). doi: 10.1016/S0048-9697(02)00043-8 CrossRefGoogle Scholar
  33. Keene, W.C., Lobert, J.M., Crutzen, P.J., Maben, J.R., Scharffe, D.H., Landmann, T., Hély, C., Brain, C.: Emissions of major gaseous and particulate species during experimental burns of southern African biomass. J. Geophys. Res.-Atmos. (2006) doi: 10.1029/2005JD006319
  34. Khare, P.K.N., Kumari, K.M., Srivastava, S.S.: Atmospheric formic and acetic acids: an overview. Rev. Geophys. 37, 227–248 (1999). doi: 10.1029/1998RG900005 CrossRefGoogle Scholar
  35. Kurtenbach, R., Becker, K.H., Gomes, J.A.G., Kleffmann, J., Lörzer, J.C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos. Environ. 35, 3385–3394 (2001). doi: 10.1016/S1352-2310(01)00138-8 CrossRefGoogle Scholar
  36. Lau, C., Fiedler, H., Hutzinger, O., Schwind, K.H., Hosseinpour, J.: Levels of selected organic compounds in materials for candle production and human exposure to candle emissions. Chemosphere 34, 1623–1630 (1997). doi: 10.1016/S0045-6535(97)00458-X CrossRefGoogle Scholar
  37. Lazaridis, M., Eleftheriadis, K., Smolik, J., Colbeck, I., Kallos, G., Drossinos, Y., Zdimal, V., Vecera, Z., Mihalopoulos, N., Mikuska, P., Bryant, C., Housiadas, C., Spyridaki, A., Astitha, M., Havranek, V.: Dynamics of fine particles and photo-oxidants in the Eastern Mediterranean (SUB-AERO). Atmos. Environ. 40, 6214–6228 (2006). doi: 10.1016/j.atmosenv.2005.06.050 CrossRefGoogle Scholar
  38. Lee, S.-C., Wang, B.: Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmos. Environ. 38, 941–951 (2004). doi: 10.1016/j.atmosenv.2003.11.002 CrossRefGoogle Scholar
  39. Lee, S.-C., Wang, B.: Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos. Environ. 40(12), 2128–2138 (2006). doi: 10.1016/j.atmosenv.2005.11.047 CrossRefGoogle Scholar
  40. Liu, W., Zhang, J., Zhang, L., Turpin, B.J., Weisel, C.P., Morandi, M.T., Stock, T.H., Colome, S., Korn, L.R.: Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmos. Environ. 40, 2202 (2006). doi: 10.1016/j.atmosenv.2005.12.005 CrossRefGoogle Scholar
  41. Löfroth, G., Stensman, C., Brandhorst-Satzkorn, M.: Indoor sources of mutagenic aerosol particulate matter: Smoking, cooking and incense burning. Mutat. Res. 261, 21–28 (1991). doi: 10.1016/0165-1218(91)90094-3 CrossRefGoogle Scholar
  42. Loupa, G., Charpantidou, E., Kioutsioukis, I., Rapsomanikis, S.: Indoor microclimate, ozone and nitrogen oxides in two medieval churches in Cyprus. Atmos. Environ. 40, 7457–7466 (2006). doi: 10.1016/j.atmosenv.2006.07.015 CrossRefGoogle Scholar
  43. Loupa, G., Charpantidou, E., Karageorgos, E., Rapsomanikis, S.: The chemistry of gaseous acids in medieval churches in Cyprus. Atmos. Environ. 41, 9018–9029 (2007). doi: 10.1016/j.atmosenv.2007.08.035 CrossRefGoogle Scholar
  44. Mellouki, A., Le Bras, G., Sidebottom, H.: Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem. Rev. 103, 5077–5096 (2003). doi: 10.1021/cr020526x CrossRefGoogle Scholar
  45. Nazaroff, W.W., Cass, G.R.: Mathematical modeling of chemically reactive pollutants in indoor air. Environ. Sci. Technol. 20, 924–934 (1986). doi: 10.1021/es00151a012 CrossRefGoogle Scholar
  46. Nazaroff, W.W., Gadgil, A.J., Weschler, C.J.: Critique of the use of deposition velocity in modeling indoor air quality. ASTM Spec. Tech. Publ. 1205, 81–104 (1993)Google Scholar
  47. Nazaroff, W.W., Weschler, C.J.: Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos. Environ. 38, 2841 (2004). doi: 10.1016/j.atmosenv.2004.02.040 CrossRefGoogle Scholar
  48. Nicolas, M., Ramalho, O., Maupetit, F.: Reactions between ozone and building products: impact on primary and secondary emissions. Atmos. Environ. 41, 3129 (2007). doi: 10.1016/j.atmosenv.2006.06.062 CrossRefGoogle Scholar
  49. Park, S.S., Hong, S.B., Jung, Y.G., Lee, J.H.: Measurements of PM10 aerosol and gas-phase nitrous acid during fall season in a semi-urban atmosphere. Atmos. Environ. 38, 293 (2004). doi: 10.1016/j.atmosenv.2003.09.041 CrossRefGoogle Scholar
  50. Perrino, C., De Santis, F., Febo, A.: Uptake of nitrous acid and nitrogen oxides by nylon surfaces: Implications for nitric acid measurement. Atmos. Environ. 22, 1925–1930 (1988). doi: 10.1016/0004-6981(88)90081-9 CrossRefGoogle Scholar
  51. Poupkou, A., Melas, D., Kioutsioukis, I., Lisaridis, I., Symeonidis, P., Balis, D., Karathanasis, S., Kazadzis, S.: Regional air quality forecasting over Greece within promote. European Space Agency, (Special Publication). ESA SP. 628 (2006)Google Scholar
  52. Ramazan, K.A., Syomin, D., Finlayson-Pitts, B.J.: The photochemical production of HONO during the heterogeneous hydrolysis of NO2. Phys. Chem. Chem. Phys. 6, 3836 (2004). doi: 10.1039/b402195a CrossRefGoogle Scholar
  53. Ramazan, K.A., Wingen, L.M., Miller, Y., Chaban, G.M., Gerber, R.B., Xantheas, S.S., Finlayson-Pitts, B.J.: New experimental and theoretical approach to the heterogeneous hydrolysis of NO2: key role of molecular nitric acid and its complexes. J. Phys. Chem. A 110, 6886–6897 (2006). doi: 10.1021/jp056426n CrossRefGoogle Scholar
  54. Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F.J., Wahner, A., Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 2189–2201 (2005)CrossRefGoogle Scholar
  55. Sakamaki, F., Hatakeyama, S., Akimoto, H.: Formation of nitrous acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapor in a smog chamber. Int. J. Chem. Kinet. 15, 1013–1029 (1983). doi: 10.1002/kin.550151006 CrossRefGoogle Scholar
  56. Sarwar, G., Corsi, R., Kimura, Y., Allen, D., Weschler, C.J.: Hydroxyl radicals in indoor environments. Atmos. Environ. 36, 3973 (2002). doi: 10.1016/S1352-2310(02)00278-9 CrossRefGoogle Scholar
  57. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics. From air pollution to cimate change. J Wiley & Sons, New York (1998)Google Scholar
  58. Seisel, S., Flückiger, B., Caloz, F., Rossi, M.J.: Heterogeneous reactivity of the nitrate radical: Reactions on halogen salt at ambient temperature and on ice in the presence of HX (X = Cl, Br, I) at 190 K. Phys. Chem. Chem. Phys. 1, 2257–2266 (1999). doi: 10.1039/a809355e CrossRefGoogle Scholar
  59. Smith, P.N.: Determination of ventilation rates in occupied buildings from metabolic CO2 concentrations and production rates. Build. Environ. 23, 95 (1988). doi: 10.1016/0360-1323(88)90023-6 CrossRefGoogle Scholar
  60. Scnelle, K.B. Jr., Brown, C.A.: Air pollution control handbook. pp. 242–243. CRC Press LLC, 200 N.W., Corporate Blvd. (2002)Google Scholar
  61. Sørensen, D.N., Weschler, C.J.: Modeling-gas phase reactions in indoor environments using computational fluid dynamics. Atmos. Environ. 36, 9–18 (2002). doi: 10.1016/S1352-2310(01)00479-4 CrossRefGoogle Scholar
  62. Spicer, C.W., Kenny, D.V., Ward, G.F., Billick, I.H.: Transformations, lifetimes, and sources of NO2, HONO, and HNO3 in indoor environments. J. Air Waste Manage. Assoc. 43, 1479 (1993)Google Scholar
  63. Spicer, C.W., Billick, I.H., Yanagisawa, Y.: Nitrous acid interference with passive NO2 measurement methods and the impact on indoor NO2 data. Indoor Air 11, 156–161 (2001). doi: 10.1034/j.1600-0668.2001.011003156.x CrossRefGoogle Scholar
  64. Suh, I., Zhang, R.: Kinetic studies of isoprene reactions initiated by chlorine atom. J. Phys. Chem. A 104, 6590 (2000). doi: 10.1021/jp000605h CrossRefGoogle Scholar
  65. Svensson, R., Ljungström, E., Lindqvist, O.: Kinetics of the reaction between nitrogen dioxide and water vapour. Atmos. Environ (1967). 21, 1529–1539 (1987)CrossRefGoogle Scholar
  66. Syomin, D.A., Finlayson-Pitts, B.J.: HONO decomposition on borosilicate glass surfaces: Implications for environmental chamber studies and field experiments. Phys. Chem. Chem. Phys. 5, 5236–5242 (2003). doi: 10.1039/b309851f CrossRefGoogle Scholar
  67. Tran, T.C., Marriott, P.J.: Characterization of incense smoke by solid phase microextraction-Comprehensive two-dimensional gas chromatography (GCXGC). Atmos. Environ. 41, 5756–5768 (2007). doi: 10.1016/j.atmosenv.2007.02.030 CrossRefGoogle Scholar
  68. Tsikaloudaki, K.: A study on luminous efficacy of global radiation under clear sky conditions in Athens, Greece. Renew. Energ. 30, 551–563 (2005). doi: 10.1016/j.renene.2004.07.009 CrossRefGoogle Scholar
  69. Večeřa, Z., Dasgupta, P.K.: Indoor nitrous acid levels. Production of Nitrous Acid from Open-Flame Sources. Int. J. Environ. Anal. Chem. 56, 311–316 (1994). doi: 10.1080/03067319408034109 CrossRefGoogle Scholar
  70. Wainman, T., Weschler, C.J., Lioy, P.J., Zhang, J.: Effects of surface type and relative humidity on the production and concentration of nitrous acid in a model indoor environment. Environ. Sci. Technol. 35, 2200 (2001). doi: 10.1021/es000879i CrossRefGoogle Scholar
  71. Wang, B., Lee, S.C., Ho, K.F.: Characteristics of carbonyls: concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmos. Environ. 41(13), 2851 (2007). doi: 10.1016/j.atmosenv.2006.11.039 CrossRefGoogle Scholar
  72. Weschler, C.J., Shields, H.C.: Production of the hydroxyl radical in indoor air. Environ. Sci. Technol. 30, 3250–3258 (1996). doi: 10.1021/es960032f CrossRefGoogle Scholar
  73. Weschler, C.J., Shields, H.C.: Measurements of the hydroxyl radical in a manipulated but realistic indoor environment. Environ. Sci. Technol. 31, 3719–3722 (1997). doi: 10.1021/es970669e CrossRefGoogle Scholar
  74. Wilkins, C.K., Clausen, P.A., Wolkoff, P., Larsen, S.T., Hammer, M., Larsen, K., Hansen, V., Nielsen, G.D.: Formation of strong airway irritants in mixtures of isoprene/ozone and isoprene/ozone/nitrogen dioxide. Environ. Health Perspect. 109, 937–941 (2001). doi: 10.2307/3454995 CrossRefGoogle Scholar
  75. Zanis, P., Kourtidis, K., Rappenglueck, B., Zerefos, C., Melas, D., Balis, D., Schmitt, R., Rapsomanikis, S., Fabian, P.: A case study on the possible link between surface ozone photochemistry and total ozone column during the PAUR II experiment at Crete: Comparison of observations with box model calculations. J. Geophys. Res. (2002) doi: 10.1029/2000JD000137
  76. Zhang, J., Wilson, W.E., Lioy, P.J.: Sources of organic acids in indoor air: a field study. J. Expo. Anal. Environ. Epidemiol. 4, 25–47 (1994)Google Scholar
  77. Zuraimi, M.S., Roulet, C.A., Tham, K.W., Sekhar, S.C., David Cheong, K.W., Wong, N.H., Lee, K.H.: A comparative study of VOCs in Singapore and European office buildings. Build. Environ. 41, 316–329 (2006). doi: 10.1016/j.buildenv.2005.01.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratory of Atmospheric Pollution and of Pollution Control Engineering, Faculty of Engineering, Department of Environmental EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations