Advertisement

Journal of Atmospheric Chemistry

, Volume 58, Issue 3, pp 181–202 | Cite as

A technique for atmospheric measurements of stable carbon isotope ratios of isoprene, methacrolein, and methyl vinyl ketone

  • R. Iannone
  • R. Koppmann
  • J. RudolphEmail author
Article

Abstract

A technique was developed to measure stable carbon isotope ratios (13C/12C) of light volatile organic compounds (VOCs) such as isoprene, methacrolein (MACR) and methyl vinyl ketone (MVK) using gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS). An automated sampling and cryofocussing system allowed for the extraction of VOCs from air samples of up to 140 L of air collected over 3 h, and the subsequent 13C/12C analysis of the VOCs by GCC-IRMS. Chromatography using selective transfer between two columns was used to improve the separation for selected compounds, increasing peak resolution and attaining less noisy baselines. Still, some target compounds could not be completely separated from co-eluting peaks. To reduce the bias of isotope ratio determinations, which can result from incomplete peak resolution, a peak-fitting procedure has been developed. In cases of overlapping peaks or substantial baseline drift, this peak fitting allows more accurate determination of isotope ratios than conventional integration schemes. Comparisons between off-line IRMS measurements and a peak-evaluation procedure using a prepared VOC gas-phase standard show that isotope ratios derived from large (>1 ng of carbon per peak) and well-resolved peaks have a reproducibility of ±0.3‰. With smaller masses in the range of 0.1–1 ng of carbon, reproducibility decreased to ±(0.5–0.8)‰. For a 140 L sample of air, such small masses of carbon correspond to mixing ratios in the low pptV range. The developed measurement technique was applied to a small set of ambient air samples taken during hot, sunny periods from late May to early August, 2005, at Forschungszentrum Jülich, Germany, a semi-rural area. The range of δ13C values determined for isoprene, benzene, and toluene are consistent with those reported in the literature. GCC-IRMS results of δ13C for ambient samples of isoprene, MACR, and MVK, measured at mixing ratios of 15–280 pptV, are presented and discussed.

Keywords

Stable isotope ratios GC-IRMS Isoprene Methacrolein Methyl vinyl ketone 

Notes

Acknowledgments

This research was supported financially by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS). The authors thank Drs. R. Wegener and M. Boner for obtaining offline δ13C values for the VOC standard.

References

  1. Anderson, D.J., Walters, R.R.: Effect of baseline errors on the calculation of statistical moments of tailed chromatographic peaks. J. Chromatogr. Sci. 22, 353–359 (1984)Google Scholar
  2. Anderson, R.S., Czuba, E., Ernst, D., Huang, L., Thompson, A.E., Rudolph, J.: Method for measuring carbon kinetic isotope effects of gas-phase reactions of light hydrocarbons with the hydroxyl radical. J. Phys. Chem. A 107, 6191–6199 (2003)CrossRefGoogle Scholar
  3. Apel, E.C., Riemer, D.D., Hills, A., Baugh, W., Orlando, J., Faloona, I., Tan, D., Brune, W., Lamb, B., Westberg, H., Carroll, M.A., Thornberry, T., Geron, C.D.: Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive. J. Geophys. Res. 107, 4034 (2002), DOI  10.1029/2000JD000225 CrossRefGoogle Scholar
  4. Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds. 1. Alkanes and alkenes. J. Phys. Chem. Ref. Data 26, 215–290 (1997)CrossRefGoogle Scholar
  5. Atkinson, R.: Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)CrossRefGoogle Scholar
  6. Atkinson, R., Arey, J.: Atmospheric chemistry of biogenic organic compounds. Acc. Chem. Res. 31, 574–583 (1998)CrossRefGoogle Scholar
  7. Atkinson, R., Arey, J.: Atmospheric degradation of volatile organic compounds. Chem. Rev. 103, 4605–4638 (2003)CrossRefGoogle Scholar
  8. Bandowe, B. Developement and application of an analytical method to measure oxygenated volatile organic compounds (OVOCs) in the atmosphere, Master Thesis, Technische Universität. Braunschweig 2005Google Scholar
  9. Biesenthal, T.A., Wu, Q., Shepson, P.B., Wiebe, H.A., Anlauf, K.G., Mackay, G.I.: A study of relationships between isoprene, its oxidation products, and ozone, in the lower Fraser Valley, BC. Atmos. Environ. 31, 2049–2058 (1997)CrossRefGoogle Scholar
  10. Bill, M., Rhew, R.C., Weiss, R.F., Goldstein, A.H.: Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh. Geophys. Res. Lett. 29 (2002), DOI  10.1029/2001GL012946
  11. Bill, M., Conrad, M.E., Goldstein, A.H.: Stable carbon isotope composition of atmospheric methyl bromide. Geophys. Res. Lett. 31, L04109 (2004), DOI  10.1029/2003GL018639
  12. Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P., Maenhaut, W.: Formation of secondary organic aerosols through photooxidation of isoprene. Science 303, 1173–1176 (2004)CrossRefGoogle Scholar
  13. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8873–8892 (1995)CrossRefGoogle Scholar
  14. Kesselmeier, J., Staudt, M.: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 33, 23–88 (1999)CrossRefGoogle Scholar
  15. Komatsu, D.D., Tsunogai, U., Yamaguchi, J., Nakagawa, F.: A selective unsaturated hydrocarbon subtraction technique for stable carbon isotopic analysis of atmospheric methyl chloride, methyl bromide, and C2–C5 saturated hydrocarbons using continuous-flow isotope ratio mass spectrometry. Rapid. Commun. Mass Spectrom. 19, 477–483 (2005)CrossRefGoogle Scholar
  16. Komenda, M., Schaub, A., Koppmann, R.: Description and characterization of an on-line system for long-term measurements of isoprene, methyl vinyl ketone, and methacrolein in ambient air. J. Chromatogr. A 995, 185–201 (2003)CrossRefGoogle Scholar
  17. Koppmann, R., Johnen, F.J., Khedim, A., Rudolph, J., Wedel, A., Wiards, B.: The influence of ozone on light nonmethane hydrocarbons during cryogenic preconcentration. J. Geophys. Res. 100, 11383–11392 (1995)CrossRefGoogle Scholar
  18. Lee, Y.-N., Zhou, X., Kleinman, L.I., Nunnermacker, L.J., Springston, S.R., Daum, P.H., Newman, L., Keigley, W.G., Holdren, M.W., Spicer, C.W., Young, V., Fu, B., Parrish, D.D., Holloway, J., Williams, J., Roberts, J.M., Ryerson, T.B., Fehsenfeld, F.C.: Atmospheric chemistry and distribution of formaldehyde and several multioxygenated carbonyl compounds during the 1995 Nashville/Middle Tennessee Ozone Study. J. Geophys. Res. 103, 22449–22462 (1998)CrossRefGoogle Scholar
  19. Levis, S., Wiedinmyer, C., Bonan, G.B., Guenther, A.: Simulating biogenic volatile organic compound emissions in the community climate system model. J. Geophys. Res. 108, 4659 (2003), DOI  10.1029/2002JD003203 CrossRefGoogle Scholar
  20. McKeen, S.A., Liu, S.C.: Hydrocarbon ratios and photochemical history of air masses. Geophys. Res. Lett. 20, 2363–2366 (1993)Google Scholar
  21. Monson, R.K., Holland, E.A.: Biospheric trace gas fluxes and their control over tropospheric chemistry. Annu. Rev. Ecol. Syst. 32, 547–576 (2001)CrossRefGoogle Scholar
  22. Montzka, S.A., Trainer, M., Angevine, W.M., Fehsenfeld, F.C.: Measurements of 3-methyl furan, methyl vinyl ketone, and methacrolein at a rural forested site in the southeastern United States. J. Geophys. Res. 100, 11393–11402 (1995)CrossRefGoogle Scholar
  23. Pierotti, D., Wofsy, S.C., Jacob, D., Rasmussen, R.A.: Isoprene and its oxidation products: methacrolein and methyl vinyl ketone. J. Geophys. Res. 95, 1871–1881 (1990)CrossRefGoogle Scholar
  24. Poisson, N., Kanakidou, M., Crutzen, P.J.: Impact of nonmethanehydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J. Atmos. Chem. 36, 157–230 (2000)CrossRefGoogle Scholar
  25. Rudolph, J., Czuba, E.: On the use of isotopic composition measurement of volatile organic compounds to determine the “photochemical age” of an air mass. Geophys. Res. Lett. 27, 3865–3868 (2000)CrossRefGoogle Scholar
  26. Rudolph, J., Lowe, D.C., Martin, R.J., Clarkson, T.S.: A novel method for compound specific determination of δ13C in volatile organic compounds at ppt levels in ambient air. Geophys. Res. Lett. 24, 659–662 (1997)CrossRefGoogle Scholar
  27. Rudolph, J., Czuba, E., Huang, L.: The stable carbon isotope fractionation for reactions of selected hydrocarbons with OH-radicals and its relevance for atmospheric chemistry. J. Geophys. Res. 105, 29329–29346 (2000)CrossRefGoogle Scholar
  28. Rudolph, J., Czuba, E., Norman, A.L., Huang, L., Ernst, D.: Stable carbon isotope composition of nonmethane hydrocarbons in emissions from transportation related sources and atmospheric observations in an urban atmosphere. Atmos. Environ. 36, 1173–1181 (2002)CrossRefGoogle Scholar
  29. Rudolph, J., Anderson, R.S., Czapiewski, K.v., Czuba, E., Ernst, D., Gillespie, T., Huang, L., Rigby, C., Thompson, A.E.: The stable carbon isotope ratio of biogenic emissions of isoprene and the potential use of stable isotope ratio measurements to study photochemical processing of isoprene in the atmosphere. J. Atmos. Chem. 44, 39–55 (2003)CrossRefGoogle Scholar
  30. Saito, T., Tsunogai, U., Kawamura, K., Nakatsuka, T., Yoshida, N.: Stable carbon isotopic composition of light hydrocarbons over the western North Pacific and implications for their photochemical ages. J. Geophys. Res. 107 (2002) 10.1029/2000JD000127.Google Scholar
  31. Santrock, J., Studley, S.A., Hayes, J.M.: Isotopic analyses based on the mass spectrum of carbon dioxide. Anal. Chem. 57, 1444–1448 (1985)CrossRefGoogle Scholar
  32. Stroud, C.A., Roberts, J.M., Goldan, P.D., Kuster, W.C., Murphy, P.C., Williams, E.J., Hereid, D., Parrish, D., Sueper, D., Trainer, M., Fehsenfeld, F.C., Apel, E.C., Riemer, D., Wert, B., Henry, B., Fried, A., Martinez-Harder, M., Harder, H., Brune, W.H., Li, G., Xie, H., Young, V.L.: Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study. J. Geophys. Res. 106, 8035–8046 (2001)CrossRefGoogle Scholar
  33. Thompson, A.E.: Stable carbon isotope ratios of nonmethane hydrocarbons and halocarbons in the atmosphere, Dissertation, York University (2003)Google Scholar
  34. Tsunogai, U., Yoshida, N., Gamo, T.: Carbon isotopic compositions of C2–C5 hydrocarbons and methyl chloride in urban, coastal and marine atmospheres over the western North Pacific. J. Geophys. Res. 104, 16033–16039 (1999)CrossRefGoogle Scholar
  35. Warneke, C., Holzinger, R., Hansel, A., Jordan, A., Lindinger, W., Pöschl, U., Williams, J., Hoor, P., Fischer, H., Crutzen, P.J., Scheeren, H.A., Lelieveld, J.: Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinam in March 1998. J. Atmos. Chem. 38, 167–185 (2001)CrossRefGoogle Scholar
  36. Wedel, A., Müller, K.P., Ratte, M., Rudolph, J.: Measurements of volatile organic compounds (VOC) during POPCORN 1994: applying a new on-line GC-MS-technique. J. Atmos. Chem. 31, 73–103 (1998)CrossRefGoogle Scholar
  37. Wiedinmyer, C., Friedfeld, S., Baugh, W., Greenberg, J., Guenther, A., Fraser, M., Allen, D.: Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas. Atmos. Environ. 35, 1001–1013 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Centre for Atmospheric ChemistryYork UniversityTorontoCanada
  2. 2.Institut für Chemie und Dynamik der GeosphäreICG-II: Troposphäre, Forschungszentrum JülichJülichGermany
  3. 3.Fachbereich C – Mathematik und Naturwissenschaften, Fachgruppe PhysikBergische UniversitätWuppertalGermany

Personalised recommendations