Surface Tension Effects of Humic-Like Substances in the Aqueous Extract of Tropospheric Fine Aerosol

Abstract

Organic aerosol constituents can influence the surface tension of nucleating cloud droplets and thereby modify the critical supersaturation necessary to activate aerosol particles. Model calculations, based on experiments carried out with different surrogates, led to contradictory conclusions on the effect of organic components on activation, indicating that the results depend very much on the surrogate selected. In order to reduce this uncertainty surface tension measurements were performed on real atmospheric aerosol components. Humic-like substances (HULIS) that accounted for 60% of the water-soluble organic carbon present in rural aerosol were isolated from 32 samples covering different seasons. The isolated organic matter present in a concentration of about 1 g L−1, decreased the surface tension of the aqueous solutions by 25–42% as compared to pure water. This effect was further enhanced when humic-like substances were mixed with ammonium sulphate. In order to support model calculations Szyskowski functions were fitted to the data to formulate the surface tension effect as a function of concentration.

Finally, natural humic substances (fulvic and humic acids) were investigated under the same conditions. The experiments revealed that the surface tension decreasing effect of atmospheric humic-like substances differed from that of the studied terrestrial and aquatic humic substances: the latter substances decreased the surface tension of the aqueous solution to a lesser extent (7–23%) than atmospheric HULIS. This deviation can be explained with the different composition (e.g. the ratio of aromatic to aliphatic moieties) of the substances investigated.

This is a preview of subscription content, access via your institution.

References

  1. Capel, P. D., Gunde, R., Zurcher, F., and Giger, W., 1990: Carbon speciation and surface tension of fog, Environ. Sci. Technol. 24, 722–727.

    Article  CAS  Google Scholar 

  2. Duarte, R. M. B. O., Pio, C. A., and Duarte, A. C., 2004: Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions, Analytica Chimica Acta, in press.

  3. Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J., 1999: Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature 401, 257–259.

    Article  CAS  Google Scholar 

  4. Facchini, M. C., Decesari, S., Mircea, M., Fuzzi, S., and Loglio, G., 2000: Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition, Atmos. Environ. 34(28), 4853–4857.

    Article  CAS  Google Scholar 

  5. Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J., 2001: Comments on Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute, J. Atm. Sci. 58, 1465–1467.

    Article  Google Scholar 

  6. Gelencsér, A., Sallai, M., Krivácsy, Z., Kiss, G., and Mészáros, E., 2000: Voltammetric evidence for the presence of humic-like substances in fog water, Atmos. Res. 54, 157–165.

    Article  Google Scholar 

  7. Gelencsér, A., Hoffer, A., Krivácsy, Z., Kiss, G., Molnár, Á., and Mészáros, E., 2002: On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res. 107(D12), art. no. 4137, doi: 10.1029/2001JD001299.

  8. Gelencsér, A., Hoffer, A., Kiss, G., Tombácz, E., Krudi, R., and Bencze, L., 2003: In-situ formation of light-absorbing organic matter in cloud water, J. Atmos. Chem. 45(1), 25–33.

    Article  Google Scholar 

  9. Gorbunov, B. and Hamilton, R., 1997: Water nucleation on aerosol particles containing both soluble and insoluble substances, J. Aerosol Sci. 28(2), 239–248.

    Article  Google Scholar 

  10. Gorbunov, B., Hamilton, R., Clegg, N., and Toumi, R., 1998: Water nucleation on aerosol particles containing both organic and soluble inorganic substances, Atmos. Res. 48, 271–283.

    Article  Google Scholar 

  11. Hitzenberger, R., Berner, A., Kasper-Giebl, A., Loflund, M., and Puxbaum, H., 2002: Surface tension of Rax cloud water and its relation to the concentration of organic material, J. Geophys. Res. 107(D24), art. no. 4752.

    Google Scholar 

  12. Hoffer, A., Kiss, G., Blazsó, M., and Gelencsér, A., 2004: Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water, Geophys. Res. Lett. 31, L06115, doi:10.1029/2003GL018962.

    Article  Google Scholar 

  13. Hunter, R. J., 1989: Foundation of Colloid Science. Ch. 5. Thermodynamics of surfaces, Clarendon Press, Oxford, pp. 228–315.

    Google Scholar 

  14. Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and Baltensperger, U., 2004: Identification of Polymers as Major Components of Atmospheric Organic Aerosols, Science 303(5664), 1659–1662.

    CAS  PubMed  Google Scholar 

  15. Kiss, G., Varga, B., Gelencsér, A., Krivácsy, Z., Molnár, Á., Alsberg, T., Persson, L., Hansson, H.-C., and Facchini, M. C., 2001: Characterisation of polar organic compounds in fog water, Atmos. Environ. 35, 2193–2200.

    CAS  Google Scholar 

  16. Kiss, G., Varga, B., Galambos, I., and Ganszky, I., 2002: Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res. 107(D21), art. no. 8339, doi:10.1029/2001JD000603.

  17. Kiss, G., Tombácz, E., Varga, B., Alsberg, T., and Persson, L., 2003: Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol, Atmos. Environ. 37, 3783–3794.

    CAS  Google Scholar 

  18. Köhler, H., 1936: The nucleus in and the growth of hygroscopic droplets, Trans. Far. Soc. 32, 1152–1161.

    Google Scholar 

  19. Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Z., Gelencsér, A., Molnár, Á., Fuzzi, S., Facchini, M. C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H.-C., and Persson, L., 2000: Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis, Atmos. Environ. 34, 4273–4281.

    Google Scholar 

  20. Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D., Varga, B., Baltensperger, U., Nyeki, S., and Weingartner, E., 2001: Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem. 39(3), 235–259.

    Google Scholar 

  21. Laaksonen, A., Korhonen, P., Kulmala, M., and Charlsson, R. J., 1998: Modification of the Köhler equation to include soluble trace gases and slightly soluble substances, J. Atm. Sci. 55, 853–862.

    Google Scholar 

  22. Leenheer, J. A., Rostad, C. E., Gates, P. M., Furlong, E. T., Ferrer, I., 2001: Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry, Anal. Chem. 73(7), 1461–1471.

    CAS  PubMed  Google Scholar 

  23. Limbeck, A., Kulmala, M., and Puxbaum, H., 2003: Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett. 30(19): art. no. 1996.

  24. Li, Y., Williams, A. L., and Rood, M. J., 1998: Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute, J. Atm. Sci. 55, 1859–1866.

    Google Scholar 

  25. Malcolm, R. L., 1989: Application of Solid-state 13C NMR Spectroscopy to Geochemical Studies of Humic Substances, in M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, and R. S. Swift (eds): Humic Substances II. In Search of Structure. Wiley, Chichester, pp. 339–372.

    Google Scholar 

  26. Mayol-Bracero, O. L., Guyon, P., Graham, B., Roberts, G., Andreae, M. O., Decesari, S., Facchini, M. C., Fuzzi, S., and Artaxo, P., 2002: Water-soluble organic compounds in biomass burning aerosols over Amazonia - 2. Apportionment of the chemical composition and importance of the polyacidic fraction, J. Geophys. Res. 107(D20), art. no. 8091.

    Google Scholar 

  27. Mircea, M., Facchini, M. C., Decesari, S., Fuzzi, S., and Charlson, R. J., 2002: The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types, Tellus 54B, 74–81.

    CAS  Google Scholar 

  28. Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D., 2001: Aerosols, Climate, and the Hydrological Cycle, Science 294(5549), 2119–2124.

    CAS  PubMed  Google Scholar 

  29. Rodhe, H., 1999: Atmospheric chemistry – Clouds and climate, Nature 401(6750), 223.

    CAS  Google Scholar 

  30. Rood, M. J. and Williams, A. L., 2001: Comments on “Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute’’ – Reply, J. Atm. Sci. 58, 1468–1473.

    Google Scholar 

  31. Seidl, W. and Hänel, G. 1983: Surface-active substances on rainwater and atmospheric particles, Pure Appl. Geophys. 121, 1077–1093.

    CAS  Google Scholar 

  32. Shulman, M. L., Jacobson, M. C., Charlson, R. J., Synovec, R. E., and Young, T. E., 1996: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett. 23, 277–280.

    CAS  Google Scholar 

  33. Sorjamaa, R., Raatikainen, T., and Laaksonen, A., 2004: The role of surfactants in Köhler theory reconsidered, Atmos. Chem. Phys. Discuss. 4, 2781–2804.

    Google Scholar 

  34. Szyskowski, B. V., 1908: Experimentelle studien über kapillare eigenschaften der wässerigen lösungen von fettsauren, Z. Phys. Chem. 64, 385–414.

    Google Scholar 

  35. Temesi, D., Molnár, Á., Mészáros, E., Feczkó, T., Gelencsér, A., Kiss, G., and Krivácsy, Z., 2001: Size resolved chemical mass balance of aerosol particles over rural Hungary, Atmos. Environ. 35, 4347–4355.

    CAS  Google Scholar 

  36. Temesi, D., Molnár, Á., Mészáros, E., and Feczkó, T., 2003: Seasonal and diurnal variation in the size distribution of fine carbonaceous particles over rural Hungary, Atmos. Environ. 37, 139–146.

    CAS  Google Scholar 

  37. Tombácz, E., 1999: Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions, Soil Sci. 164(11), 814–824.

    Google Scholar 

  38. Varga, B., Kiss, G., Ganszky, I., Gelencsér, A., and Krivácsy, Z., 2001: Isolation of water-soluble organic matter from atmospheric aerosol, Talanta 55(3), 561–572.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gyula Kiss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kiss, G., Tombácz, E. & Hansson, HC. Surface Tension Effects of Humic-Like Substances in the Aqueous Extract of Tropospheric Fine Aerosol. J Atmos Chem 50, 279–294 (2005). https://doi.org/10.1007/s10874-005-5079-5

Download citation

Key words

  • atmospheric aerosol
  • cloud formation
  • humic-like substances
  • Kelvin effect
  • surface tension