Journal of Atmospheric Chemistry

, Volume 51, Issue 3, pp 271–291 | Cite as

Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs

  • M. Steinbacher
  • J. Dommen
  • C. Ordonez
  • S. Reimann
  • F. C. GrÜebler
  • J. Staehelin
  • A. S. H. Prevot
Article

Abstract

Measurements of volatile organic compounds (VOCs) were performed in the Po Basin, northern Italy in early summer 1998 within the PIPAPO project as well as in summer 2002 and autumn 2003 within the FORMAT project. During the three campaigns, trace gases and meteorological parameters were measured at a semi-rural station, around 35 km north of the city center of Milan. Low toluene and benzene concentrations and lower toluene to benzene ratios on weekends, on Sundays, and in August enabled the identification of a ‘weekend’ and a ‘vacation’ effect when anthropogenic emissions were lower due to less traffic and reduced industrial activities, respectively. Recurrent nighttime cyclohexane peaks suggested a periodical short-term release of cyclohexane close to the semi-rural sampling site. A multivariate receptor model analysis resulted in the distinction of different characteristic concentration profiles attributed to natural gas, biogenic impact, vehicle exhaust, industrial activities, and a single cyclohexane source.

Keywords

benzene Greater Milan area positive matrix factorization toluene vacation effect weekend effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeschi, A., Colucci, A., Gianelle, V., Gnagnetti, M., Tamponi, M., and Tebaldi, G., 1991: Analysis of the impact on air quality of motor vehicle traffic in the Milan urban area, Atmospheric Environment 25B(3), 415–428.Google Scholar
  2. Blanchard, C. L. and Tanenbaum, S. J., 2003: Differences between weekday and weekend air pollutant levels in Southern California, Journal of the Air & Waste Management Association 53, 816–828.Google Scholar
  3. Borbon, A., Fontaine, H., Locoge, N., Veillerot, M., and Galloo, J. C., 2003: Developing receptor-oriented methods for non-methane hydrocarbon characterization in urban air – part I: source identification, Atmospheric Environment 37, 4051–4064.CrossRefGoogle Scholar
  4. Brocco, D., Fratarcangeli, R., Lepore, L., Petricca, M., and Ventrone, I., 1997: Determination of aromatic hydrocarbons in urban air of Rome, Atmospheric Environment 31(4), 557–566.CrossRefGoogle Scholar
  5. Brönnimann, S. and Neu, U., 1997: Weekend-weekday Differences of Near-Surface Ozone Concentrations in Switzerland for Different Meteorological Conditions, Atmospheric Environment 31(8), 1127–1135.CrossRefGoogle Scholar
  6. Carter, W. P. L., 1994: Development of ozone reactivity scales for volatile organic compounds, Journal of the Air & Waste Management Association 44, 881–899.Google Scholar
  7. Ciccioli, P., Brancaleoni, E., and Frattoni, M., 1999: Reactive Hydrocarbons in the Atmosphere at Urban and Regional Scales, in Reactive Hydrocarbons in the Atmosphere, edited by C. N. Hewitt, pp. 159–207, Academic Press, San Diego.Google Scholar
  8. Choi, Y.-J. and Ehrmann, S. H., 2004: Investigation of sources of volatile organic carbon in the Baltimore area using highly time-resolved measurements, Atmospheric Environment 38, 775–791.CrossRefGoogle Scholar
  9. Christensen, C. S., Skov, H., and Palmgren, F., 1999: C5-C8 non-methane hydrocarbon measurements in Copenhagen: concentrations, sources and emission estimates, The Science of the Total Environment 236, 163–171.CrossRefGoogle Scholar
  10. Derwent, R. G., Davies, T. J., Delaney, M., Dollard, G. J., Field, R. A., Dumitrean, P., Nason, P. D., Jones, B. M. R., and Pepler, S. A., 2000: Analysis and interpretation of the continuous hourly monitoring data for 26 C2-C8 hydrocarbons at 12 United Kingdom sites during 1996, Atmospheric Environment 34, 297–312.CrossRefGoogle Scholar
  11. Derwent, R. G., Middleton, D. R., Field, R. A., Goldstone, M. E., Lester, J. N., and Perry, R., 1995: Analysis and interpretation of air quality data from an urban roadside location in central london from the period from July 1991 to July 1992, Atmospheric Environment 29(8), 923–946.CrossRefGoogle Scholar
  12. Diem, J. E., 2000: Comparisons of weekday-weekend ozone: Importance of biogenic volatile organic compound emissions in the semi-arid southwest USA, Atmospheric Environment 34, 3445–3451.CrossRefGoogle Scholar
  13. Dommen, J., Prévôt, A. S. H., Baertsch-Ritter, N., Maffeis, G., Longoni, M. G., Grüebler, F. C., and Thielmann, A., 2003: High-resolution emission inventory of the Lombardy region: development and comparison with measurements, Atmospheric Environment 37, 4149–4161.CrossRefGoogle Scholar
  14. Dommen, J., Prévôt, A. S. H., Neininger, B., and Bäumle, M., 2002: Characterization of the photooxidant formation in the metropolitan area of Milan from aircraft measurements, Journal of Geophysical Research 107(D22), art.-nr.: 8197, 10.1029/2000JD000283.Google Scholar
  15. Friedrich, R. and Obermeier, A., 1999: Anthropogenic Emissions of Volatile Organic Compounds. In C. N. Hewitt, Reactive Hydrocarbons in the Atmosphere, Academic Press, San Diego, pp. 2–39.Google Scholar
  16. Fujita, E. M., 2001: Hydrocarbon source apportionment for the 1996 Paso del Norte Ozone Study, The Science of the Total Environment 276, 171–184.CrossRefPubMedGoogle Scholar
  17. Fujita, E. M., Watson, J. G., Chow, J. C., and Magliano, K. L., 1995: Receptor Model and Emissions Inventory Source Apportionments of Nonmethane Organic Gases in California’s San Joaquin Valley and San Francisco Bay Area, Atmospheric Environment 29(21), 3019–3035.CrossRefGoogle Scholar
  18. Grüebler, F. C., 1999: Reactive hydrocarbons in the Milan area: Results from the PIPAPO campaign. PhD Thesis. Institute for Atmospheric Science, Swiss Federal Institute of Technology Zurich.Google Scholar
  19. Guerra, G., Iemma, A., Lerda, A., Martines, C., Salvi, G., and Tamponi, M., 1995: Benzene emissions from motor vehicle traffic in the urban area of Milan: Hypothesis of health impact assessment, Atmospheric Environment 29(23), 3559–3569.CrossRefGoogle Scholar
  20. Haagen-Smit, A. J., 1952: Chemistry and Physiology of Los Angeles Smog, Industrial and Engineering Chemistry 44(6), 1342–1346.CrossRefGoogle Scholar
  21. Heeb, N. V., Forss, A.-M., Bach, C., Reimann, S., Herzog, A., and Jäckle, H. W., 2000: A comparison of benzene, toluene and C2-benzenes mixing ratios in automotive exhaust and in the suburban atmosphere during the introduction of catalytic converter technology to the Swiss Car Fleet, Atmospheric Environment 34, 3103–3116.CrossRefGoogle Scholar
  22. Heuss, J. M., Kahlbaun, D. F., and Wolff, G. T., 2003: Weekday/Weekend Ozone Differences: What can we learn from Them?, Journal of the Air & Waste Management Association 53, 772–788.Google Scholar
  23. Jenkin, M. E., Davies, T. J., and Stedman, J. R., 2002: The origin and day-of-week dependence of photochemical ozone episodes in the UK, Atmospheric Environment 36, 999–1012.CrossRefGoogle Scholar
  24. Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prévôt, A. S. H., Fisseha, R., Frankevich, V., Zenobi, R., and Baltensperger, U., 2004: Identification of polymers as major components of atmospheric organic aerosols, Science 303, 1659–1662.CrossRefPubMedGoogle Scholar
  25. Konrad, S. and Volz-Thomas, A., 2000: Characterization of a commercial gas chromatography-flame ionization detection system for the in situ determination of C5-C10 hydrocarbons in ambient air, Journal of Chromatography A 878, 215–234.CrossRefPubMedGoogle Scholar
  26. Latella, A., Stani, G., Cobelli, L., Duane, M., Junninen, H., Astorga, C., and Larsen, B. R., 2005: Semicontinuous GC Analysis and Receptor Modelling for Source Apportionment of Ozone Precursor Hydrocarbons in Bresso, Milan 2003, Journal of Chromatography A 1071, 29–39.CrossRefPubMedGoogle Scholar
  27. Marr, L. C. and Harley, R. A., 2002: Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California, Atmospheric Environment 36, 2327–2335.CrossRefGoogle Scholar
  28. Neftel, A., Spirig, C., Prévôt, A. S. H., Furger, M., Stutz, J., Vogel, B., and Hjorth, J., 2002: Sensitivity of photooxidant production in the Milan Basin: An overview of results from a EUROTRAC-2 Limitation of Oxidant Production field experiment, Journal of Geophysical Research 107(D22), art.-nr.: 8188, 10.1029/2001JD001263.Google Scholar
  29. NIST Chemistry webbook, 2004:http://webbook.nist.gov/chemistry/pa-ser.html.
  30. Paatero, P., 1997: Least squares formulation of robust non-negative factor analysis, Chemometrics and Intelligent Laboratory Systems 37, 23–35.CrossRefGoogle Scholar
  31. Paatero, P. and Tapper, U., 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics 5, 111–126.Google Scholar
  32. Prévôt, A. S. H., Staehelin, J., Kok, G. L., Schillawski, R. D., Neininger, B., Staffelbach, T., Neftel, A., Wernli, H., and Dommen, J., 1997: The Milan photooxidant plume, Journal of Geophysical Research 102(D19), 23375–23388.CrossRefGoogle Scholar
  33. Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, pp. 1326.Google Scholar
  34. Sagebiel, J. C., Zielinska, B., Pierson, W. R., and Gertler, A. W., 1996: Real-world emissions and calculated reactivities of organic species from motor vehicles, Atmospheric Environment 30(12), 2287–2296.CrossRefGoogle Scholar
  35. Spirig, C., Neftel, A., Kleinman, L. I., and Hjorth, J., 2002: NOx versus VOC limitation of O3 production in the Po valley: local and integrated view based on observations, Journal of Geophysical Research 107(D22), art.-nr.: 8191, 10.1029/2001JD000561.Google Scholar
  36. Staehelin, J., Keller, C., Stahel, W., Schläpfer, K., and Wunderli, S., 1998: Emission Factors from Road Traffic from a Tunnel Study (Gubrist Tunnel, Switzerland). Part III: Results of Organic Compounds, SO2 and Speciation of Organic Exhaust Emissions, Atmospheric Environment 32(6), 999–1009.CrossRefGoogle Scholar
  37. Staffelbach, T., Neftel, A., Blatter, A., Gut, A., Fahrni, M., Staehelin, J., Prévôt, A. S. H., Hering, A. M., Lehning, M., Neininger, B., Bäumle, M., Kok, G. L., Dommen, J., Hutterli, M., and Anklin, M., 1997: Photochemical oxidant formation over southern Switzerland. 1. Results from summer 1994, Journal of Geophysical Research 102(D19), 23345–23362.CrossRefGoogle Scholar
  38. Steinbacher, M., Dommen, J., Ordóñez, C., Reimann, S., Staehelin, J., Andreani-Aksoyoglu, S., and Prévôt, A. S. H., 2005: Volatile organic compounds in the Po Basin. Part B: biogenic VOCs, Journal of Atmospheric Chemistry 51, 293–315.Google Scholar
  39. Steinbacher, M., Dommen, J., Ammann, C., Spirig, C., Neftel, A., and Prévôt, A. S. H., 2004: Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements, International Journal of Mass Spectrometry 239, 117–128.CrossRefGoogle Scholar
  40. Thielmann, A., Prévôt, A. S. H., Grüebler, F. C., and Staehelin, J., 2001: Empirical ozone isopleths as a tool to identify ozone production regimes, Geophysical Research Letters 28(12), 2369–2372.CrossRefGoogle Scholar
  41. Thielmann, A., Prévôt, A. S. H., and Staehelin, J., 2002: Sensitivity of ozone production derived from field measurements in the Italian Po basin, Journal of Geophysical Research 107(D22), art.-nr.: 8194, 10.1029/2000JD000119.Google Scholar
  42. Watson, J. G., Chow, J. C., and Fujita, E. M., 2001: Review of volatile organic compound source apportionment by chemical mass balance, Atmospheric Environment 35, 1567–1584.CrossRefGoogle Scholar
  43. Winkler, J., Blank, P., Glaser, K., Gomes, J. A. G., Habram, M., Jambert, C., Jaeschke, W., Konrad, S., Kurtenbach, R., Lenschow, P., Lörzer, J. C., Perros, P. E., Pesch, M., Prümke, H. J., Rappenglück, B., Schmitz, T., Slemr, F., Volz-Thomas, A., and Wickert, B., 2002: Ground-based and airborne measurements of nonmethane hydrocarbons in BERLIOZ: Analysis and selected results, Journal of Atmospheric Chemistry 42, 465–492.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. Steinbacher
    • 1
    • 2
  • J. Dommen
    • 1
  • C. Ordonez
    • 1
  • S. Reimann
    • 2
  • F. C. GrÜebler
    • 3
  • J. Staehelin
    • 3
  • A. S. H. Prevot
    • 1
  1. 1.Paul Scherrer InstitutLaboratory of Atmospheric ChemistryVilligen PSISwitzerland
  2. 2.Swiss Federal Institute for Material Testing and Research (EMPA)Laboratory for Air Pollution/Environmental TechnologyDübendorfSwitzerland
  3. 3.Swiss Federal Institute of TechnologyInstitute for Atmospheric and Climate ScienceZurichSwitzerland

Personalised recommendations