Journal of Atmospheric Chemistry

, Volume 51, Issue 3, pp 235–270 | Cite as

Influence of Biogenic Secondary Organic Aerosol Formation Approaches on Atmospheric Chemistry

  • Boris Bonn
  • Mark G. Lawrence


Global secondary organic aerosol formation (SOA) is currently assumed to be between 11.2 and 270 Tg/yr. This range of uncertainty is reflected in the gas-phase chemistry. In this study, we focus on the feedback of SOA formation on the concentrations of most important trace gases such as ozone, and compare it to the impact of monoterpene gas-phase chemistry with a newly developed reduced monoterpene mechanism (MMM) for either α- or β-pinene in the global chemistry transport model MATCH-MPIC. With this set-up an uncertainty range of 3.5–4.0% increase in annually averaged tropospheric ozone was found to be caused by the gas-phase chemistry of the investigated monoterpenes. Moreover, a strong feedback has been observed for NOx, HCHO, HNO3 and PAN. These observations are affected remarkably by different SOA formation approaches like partitioning or saturation vapour pressure limitation and by the structure of the monoterpene used, e.g. reducing the impact on tropospheric ozone to 1.2–1.9% by using the partitioning approach versus the simulation with gas-phase chemistry only. Therefore, a consideration of the individual processes associated with SOA formation seems to be necessary to reduce the uncertainty in SOA formation and to understand the impact of VOCs on atmospheric chemistry.


secondary organic aerosol formation partitioning atmospheric chemistry monoterpenes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson-Sköld, Y. and Simpson, D., 2001: Secondary organic aerosol formation in Northern Europe: A model study, J. Geophys. Res. 106(D7), 7357–7374.Google Scholar
  2. Andreae, M. O. and Crutzen, P. J., 1997: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science 276(5315), 1052–1058.CrossRefGoogle Scholar
  3. Asher, W. E., Pankow, J. F., Erdakos, G. E., and Seinfeld, J. H., 2002: Estimating the vapor pressures of multi-functional oxygen-containing organic compounds using group contribution methods, Atmos. Environ. 36(9), 1483–1498.CrossRefGoogle Scholar
  4. Atkinson, R. and Arey, J., 2003: Atmospheric degradation of volatile organic compounds, Chem. Rev. 103(12), 4605–4638.CrossRefGoogle Scholar
  5. Barsanti, K. C. and Pankow, J. F., 2004: Thermodynamics of the formation of atmospheric particulate matter by accretion reactions – Part 1: Aldehydes and ketones, Atmos. Environ. 38(2), 4371–4382.CrossRefGoogle Scholar
  6. Barthelmie, R. J. and Pryor, S. C., 1999: A model mechanism to describe oxidation of monoterpenes leading to secondary organic aerosol-1. α-pinene and β-pinene, J. Geophys. Res. 104(D19), 23657–23669.CrossRefGoogle Scholar
  7. Bonn, B. and Moortgat, G. K., 2003: Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons, Geophys. Res. Lett. 30(11): 1585, doi:10.1029/2003GL017000.CrossRefGoogle Scholar
  8. Bonn, B., von Kuhlmann, R., and Lawrence, M. G., 2004: High contribution of biogenic hydroperoxides to secondary organic aerosol formation, Geophys. Res. Lett. 31(10), L10108, doi: 10.1029/2003GL019172.CrossRefGoogle Scholar
  9. Boy, M., Petäjä, T., Dal Maso, M., Rannik, Ü., Rinne, J., Aalto, P., Laaksonen, A., Vaattovaara, P., Joutsensaari, J., Hoffmann, T., Warnke, J., Apostolaki, M., Stephanou, E., Tsapakis, M., Kouvarakis, A., Pio, C., Carvalho, A., Römpp, A., Moortgat, G., Spirig, C., Guenther, A., Greenberg, J., Ciccioli, P., and Kulmala, M., 2004: Overview of the field measurement campaign in Hyytiälä, August 2001 in the framework of the EU project OSOA, Atmos. Chem. Phys. 4, 657–678.Google Scholar
  10. Chung, S. H. and Seinfeld, J. H., 2002: Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res. 107(D19), 4407, doi:10.1029/2001JD001397.CrossRefGoogle Scholar
  11. Derwent, R. G., Jenkin, M. E., Johnson, C. E., and Stevenson, D. S., 2003: The global distribution of secondary particulate matter in a 3-D Lagrangian chemistry transport model, J. Atmos. Chem. 44(1), 57–95.CrossRefGoogle Scholar
  12. Guenther, A., Hewitt, N. C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100(D5), 8873–8892.CrossRefGoogle Scholar
  13. Griffin, R. J., Cocker, D. R., III, Flagan, R. C., and Seinfeld, J. H., 1999a: Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res. 104(D3), 3555–3567.CrossRefGoogle Scholar
  14. Griffin, R. J., Cocker, D. R., III, Seinfeld, J. H., and Dabdub, D., 1999b: Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons, Geophys. Res. Lett. 26(17), 2721–2724.CrossRefGoogle Scholar
  15. Hoffmann, Th., Odum, J., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., and Seinfeld, J. H., 1997: Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem. 26(2), 189–222.CrossRefGoogle Scholar
  16. Hoffmann, T. (ed.), 2003: Origin and formation of secondary organic aerosol, Final report, European Commission.Google Scholar
  17. Jaenicke, R., 1993: Tropospheric aerosols in Aerosol-cloud-climate interactions, P. V. Hobbs (ed.), Academic Press, San Diego: 1–31.Google Scholar
  18. Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M., 2002: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science 298, 814–817.CrossRefGoogle Scholar
  19. Jenkin, M. E., 2004: Modelling the formation and composition of secondary organic aerosol from α- and βpinene ozonolysis using MCM v3, Atmos. Chem. Phys. Diss. 4, 2905–2948.Google Scholar
  20. Kamens, R., Jang, M., Chien, C. J., and Leach, K., 1999: Aerosol formation from the reaction of alpha-pinene and ozone using a gas-phase kinetics aerosol partitioning model, Environ. Sci. Technol. 33(9), 1430–1438.CrossRefGoogle Scholar
  21. Kesselmeier, J., Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Andreae, M. O., Ciccioli, P., Brancaleoni, E., Frattoni, M., Oliva, S. T., Botelho, M. L., Silva, C. M. A., and Tavares, T. M., 2002: Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia (Amazonia), J. Geophys. Res. 107(D20), 8053, doi: 10.1029/2000JD000267.CrossRefGoogle Scholar
  22. Lack, D. A., Tie, X. X., Bofinger, N. D., Wiegand, A. N., and Madronich, S., 2004: Seasonal variability of secondary organic aerosols: A global modeling study, J. Geophys. Res. 109(D3), D03203, doi: 10.1029/2003JD0013JD003418.CrossRefGoogle Scholar
  23. Lawrence, M. G., Crutzen, P. J., Rasch, P. J., Eaton, B. E., and Mahowald, N. M., 1999: A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation, J. Geophys. Res. 104(D21), 26245–26277.CrossRefGoogle Scholar
  24. Master Chemical Mechanism version 3.0, 2004:, Leeds University.
  25. Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H., 1996: Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol. 30(8), 2580–2585.CrossRefGoogle Scholar
  26. Sioutas, C., Pandis, S. N., Allen, D. T., Pandis, S. N., and Solomon, P. A., 2004: Special issue of Atmospheric Environment on findings from EPA’s particulate matter supersites program: preface, Atmos. Environ. 38(20), 3101–3106.CrossRefGoogle Scholar
  27. Pankow, J. F., 1994a: An adsorption model of the gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ. 28(2), 185–188.Google Scholar
  28. Pankow, J. F., 1994b: An adsorption model of gas/particle partitioning involved in the formation of secondary organic aerosol, Atmos. Environ. 28(2), 189–193.Google Scholar
  29. Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J., 2000: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem. 37(1), 29–52.Google Scholar
  30. Rasch, P., Mahowald, J. N. M., and Eaton, B. E., 1997: Representations of transport, convection, and the hydrological cycle in chemical transport models: Implications for the modeling of short-lived and soluble species, J. Geophys. Res. 102(D23), 28127–28138.CrossRefGoogle Scholar
  31. Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic hydrocarbons, Atmos. Chem. Phys. 3, 161–180.Google Scholar
  32. Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S., 1997: A new mechanism for regional atmospheric chemistry modelling, J. Geophys. Res. 102(D22), 25847–25879.CrossRefGoogle Scholar
  33. Seinfeld, J. H. and Pandis, S. N., 1998: Atmospheric Chemistry and Physics, Wiley Interscience, New York.Google Scholar
  34. Tsigaridis, K. and Kanakidou, M., 2003: Global modelling of secondary organic aerosol in the troposphere: A sensitivity study, Atmos. Chem. Phys. 3, 1849–1869.CrossRefGoogle Scholar
  35. von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J., 2003: A model for studies for studies of tropospheric ozone and non-methane hydrocarbons: Model description and ozone results, J. Geophys. Res. 108(D9), 4294, doi:10.1029/2002JD002893.CrossRefGoogle Scholar
  36. Winterhalter, R., Van Dingenen, R., Larsen, B. R., Jensen, N. R., and Hjorth, J., 2003: LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH-radicals, Atmos. Chem. Phys. Diss. 3, 1–39.Google Scholar
  37. Yu, J. Z., Cocker, D. R., Griffin, R. J., Flagan, R. C., and Seinfeld, J. H., 1999: Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products, J. Atmos. Chem. 34(2), 207–258.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Boris Bonn
    • 1
    • 2
  • Mark G. Lawrence
    • 1
  1. 1.Max-Planck-Institute for ChemistryAir Chemistry DepartmentMainzGermany
  2. 2.Physical Sciences DepartmentHelsinki UniversityHelsinkiFinland

Personalised recommendations